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ABSTRACT

When dealing with traffic assignment problems considering uncertainty in the decisions that leads
to stochastic route-choice models, it is important to represent the options that motorists actually
consider as viable alternatives to choose. If we do not take into account this kind of reasoning, all
existing routes connecting an origin-destination pair should have a chance to be selected and then,
they would be assigned with positive flow, even those options considered as not-intuitive ones.
Considering as a base model the Markovian dynamic traffic assignment (MDTA) model (de la
Paz Guala, 2020), an arc-based stochastic DTA model conceived as the integration of the Marko-
vian traffic equilibrium from Baillon and Cominetti (2008) and the formulational framework of
Heydecker and Addison (1997,1998) and Han (2003) for dynamic traffic assignment, we integrate
the intuition of selecting arcs to be considered as options. The MDTA model is a stochastic DTA
model that accommodates overlapping routes respecting correlation of their costs and First In First
Out (FIFO) rule where the choices made by motorists on realistic transport networks are mostly
using the perceived costs of all routes from their origins to their destinations. We integrate the con-
cept of reasonability of an arc towards a destination with the idea of reducing the set of alternatives
in a way that could interpretate different criteria that motorists could apply. Then, it is assumed that
motorists only travel through reasonable arcs.

1. INTRODUCTION

In the context of traffic studies and transport planning analysis, modelling the behavioural princi-
ples that lead motorists to choose their routes on a transport network to fulfill their travel necessities
constitutes one of the most relevant issues in evaluating strategic and tactical transport investment
projects. Static formulations behind traffic assignment models are well established, with known
properties and associated methods to calculate high-quality solutions efficiently. However, the use
of static formulations that assume steady-state networks precludes appropriate modelling of con-
gestion in peak periods where overloaded networks cannot achieve steady-state conditions.
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In the last few decades, due to new methodological and technological advances, much of the re-
search on these topics has focused on the dynamics governing the behaviour behind the assignment
of vehicles on transport networks. Dynamic formulations of traffic assignment have challenged re-
searchers and remain the topic of current research for several reasons. In this sense, we highlight
the technical difficulty of spatiotemporal traffic modelling that plausibly respects the crucial pro-
perties of flow conservation. In addition, the dynamic properties of capacity limitations, causality
and flow propagation are important features of the dynamic context. These models are required
to furnish estimates of travel times that influence route choice, and for the success of a suitable
dynamic formulation, it is essential to build an appropriate route choice model.

Thus, interest in the dynamic traffic assignment (DTA) problem has grown considerably, as it takes
into account temporal variation in demand in the assignment, which provides more realistic mo-
delling of congestion in the context of transport network planning and policy studies. Specifically,
DTA establishes the relationship between the dynamic route choice and the consequent variation
in travel times given the features of the physical network. It is a natural extension of existing static
assignment models, in which routing decisions of motorists are assumed constant through the study
period. By contrast, DTA respects that traffic conditions change as motorists move through the net-
work. Research on DTA has focused on motorists’ behaviour, model formulations, and solution
methods to represent the time dependence, consistent with the observed congestion dynamics.

From the formal introduction of the dynamic version of traffic assignment problems (Merchant
y Nemhauser, 1978), DTA has been addressed through several approaches. Szeto y Wang (2011)
proposed a classification that distinguishes for a DTA model: (1) the choice dimension; (2) the time
dimension; and (3) the formulation. Recently, Friesz y Han (2018) proposed the dynamic user equi-
librium (DUE) as a differential variational inequality (DVI), suggesting a fixed-point algorithm as
a way to compute a DUE solution. They adapted this algorithm to calculate dynamic equilibrium
assignments in both continuous and discrete times. Work on DTA in the last two decades has been
extensive and diverse in terms of formulations and solution algorithms; as part of a deep analy-
sis of many DTA developments, we have identified some articles, such as Addison y Heydecker
(1996), that have stipulated necessary requirements for the appropriate formulation of a suitable
DTA model: a demand profile, a traffic model and a route-choice model. Comparisons among dif-
ferent traffic models to show how they could contribute to a DTA formulation, based on the pursued
objectives, have also been addressed (Addison y Heydecker, 1998).

In the present work, it is fundamental to use as a basis a model able to integrate the effects of un-
certainty in motorist behaviour as a key aspect influencing their routing decisions while travelling
through the network. In this context, the stochastic version of DTA has been studied considering
different ways to incorporate uncertainty in routing decisions with the dynamic evolution of traffic
during the modelling period, as represented by DTA models. In this direction, Han (2003) and Sze-
to et al. (2011) presented analytic route-based models with uncertainty in motorists’ choice under
dynamic assignment schemes, the former under an assignment protocol explained in detail in the
next section, while the latter supports their work on a cell-based formulation. Han (2003) develo-
ped an extension to general networks and discrete time of a previous work by B. G. Heydecker y
Addison (1997) where uncertainty is added to their modelling framework by assuming that route
cost is perceived differently by different motorists. In this formulation, route choice is performed
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through a logit model that considers generalized cost as the dominant criterion, which includes an
error with an iid Gumbel distribution, generating a stochastic version of the originally deterministic
DTA model. Lim y Heydecker (2005) further extended the previous models, considering departure
time choice in conjunction with route choice, defining a condition for what the authors called dyna-
mic departure time/stochastic user equilibrium, DDSUE, establishing that no traveller can improve
their perceived travel cost by unilaterally changing their departure time and route combination.
Using approaches based on simulation, Long et al. (2019) and Barceló et al. (1999) incorporated
stochasticity in the choice using stochastic simulation to represent the dynamics behind motorists’
route choice with fixed demand. Unlike previous works, Waller y Ziliaskopoulos (2006) developed
an analytic route-based model in a DTA context in which demand is uncertain.

As outlined, we find stochastic versions of the route-choice model in the literature. Although the-
se approaches vary on how they address the uncertainty of the motorists’ choices when making
routing decisions, they consider as the choice criterion the individual’s perceived cost of travel
from their origin to their destination. Baillon y Cominetti (2008) introduced the concept of Mar-
kovian Traffic Equilibrium (MTE) for the static case. This Markovian framework is distinguished
by its traffic assignment model which considers that motorists choose according to the expected
minimum cost from their current location to their destination. This overcomes the limitations of
route-based stochastic models in its treatment of routes with common sections. Zimmermann et al.
(2021) integrated the MTE approach with capacity constraints developed by Marcotte et al. (2004),
in which some vehicles are not able to enter a link at a rate that exceeds its capacity. In this con-
text, Mai Anh et al. (2015) presented a recursive approach for the static case, where the choice of
arcs leds to the construction of the route. Fosgerau et al. (2013) approached the MTE by genera-
ting a model that could be interpreted as dynamic under considerations such as deterministic arc
costs. They also addressed overlapping routes by a correction of their utilities. Shimamoto y Kondo
(2020) extended a static path flow estimation to a semi-dynamic version in a specific context.

Our paper presents a Markovian dynamic model of route choice in which the remainder of each
journey is assigned probabilistically to the available routes. This is integrated into a dynamic setting
with suitably chosen traffic models to estimate costs depending on the assigned flows. Specifically,
the route-choice model proposed by Baillon y Cominetti (2008) in their MTE model is adapted to
consider the dynamic features associated with a DTA formulation by following the modelling consi-
derations established by Addison y Heydecker (1996). We denote this framework as the Markovian
dynamic traffic assignment model (MDTA). We identify three major contributions of the present
research. First, we present the formulation of a DTA using the route-choice model in Baillon and
Cominetti’s MTE and Addison and Heydecker’s modelling framework in an approach that respects
the FIFO traffic property, followed by a description of different ways to approach the way motorists
can label an arc that they can choose as an alternative, through the reasonability concept. Second,
develop a solution algorithm inspired by Dial’s algorithm (Dial, 1971) but repeated at each time
increment and with a reversed order of the two passes of network scanning, able to addapt different
criteria to represent reasonabilty. Third, we computationally implement the algorithm in order to
preliminarly test the effect of reducing the set of options to be considered by motorists.

Recalling the classification of Szeto y Wang (2011), our model includes (1) pure route choice inclu-
ding en-route adjustment/reactive capability with fixed demand; (2) within-day study with a con-
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tinuous horizon; and (3) analytical, arc-based treatment of a single-class user, with a non-physical
queue. In our framework, we develop the traffic assignment associated with the MTE to a dynamic
version while integrating a capacity restraint concept that differs from that of Zimmermann et al.
(2021) through the deterministic punctual queueing traffic model, according to which queues are
formed whenever the service capacity of an arc is exceeded. Unlike Fosgerau et al. (2013), our
approach directly addresses both dynamic and stochastic aspects. Moreover, our treatment of over-
lapping routes is straightforward and the arc-based expressions for flows and queues are explicit.

In the following section (section 2), we discuss the foundations in literature of the basis model
formulation, introducing the concepts that are then elaborated. Next, in section 3, our proposed is
model is presented, to continue with the characterizatio of the different approaches for the reaso-
nability. Then, a description of the solution algorithm in section 5. In section 6, we compare the
give an insight of the effects of recuding the set of arc options. Finally, in section 7 we present our
conclusions, comments and insights for further research.

2. BASICS FOR THE MODEL FORMULATION

The modelling approach by Heydecker and Addison works as follows. Given a transport network
represented by the digraph (N,A), where N is the set of nodes and A is the set of arcs (A ⊆ N×N ),
for each arc a ∈ A, Ea(t) is the inflow rate to a at t and Ga(t) is the outflow rate from a at time t.

In the case of the deterministic queuing model, let ϕa be the free flow travel time of arc a, Qa be
the queue service capacity of arc a, La(t) be the amount of traffic in the queue on arc a at time t
and ra(t) be the delay incurred because of the queue on arc a, having joined it at time t. According
to this model, the following equations apply:

dLa

dt
= Ea(t− ϕa)−Ga(t), (1)

Ga(t) =

{
Ea(t− ϕa), if La(t) = 0 and Ea(t− ϕa) < Qa,

Qa, otherwise,
(2)

ra(t) =
La(t+ ϕa)

Qa

, (3)

and
τa(t) = t+ ϕa + ra(t). (4)

The cost ca(t) of travel on arc a entering it at time t is given by ca(t) = ϕa + ra(t).

In addition, following Papageorgiou (1990), B. Heydecker y Addison (2005) show that as a conse-
quence of the FIFO rule applied to traffic travelling to different destinations,

Gd
a (τa(t)) =

Ed
a (t)

dτa(t)
dt

, (5)

where Ed
a(t) is destination d’s-specific inflow rate to arc a at time t and Gd

a(τ) is destination d’s-
specific outflow rate from a at time τ .
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Han (2003) generalizes this approach incorporating stochasticity through a logit model for the
route choice. Note that in stochastic assignment, not all routes have least cost at their time of
use. Considering this, the stochastic dynamic user equilibrium (SDUE) traffic assignment model is
presented, in which, according to the logit specification with positive dispersion parameter θ, the
probability P od

p (t) of using route p at time t between origin-destination (O-D) pair (o, d), among
the set Rod of all routes from o to d, is given by:

P od
p (t) =

exp(−θCod
p (t))∑

q∈Rod

exp(−θCod
q (t))

, p ∈ Rod, (6)

where Cod
p (t) is the cost of using route p, starting at time t, to go from o to d. B. G. Heydecker y

Addison (1997) show that the route choice model (6) is continuous in cost and, as a consequence of
the deterministic queue model, costs C(t) are continuous in time, so that route choice is continuous
in time. Because of this, in a time discretised (∆t) solution approach the route choice model (6)
can be populated with costs Cod

p (t) calculated for time t to give assignment proportions Pp for the
time interval [t, t+∆t) that have error O(∆t).

An intuitive explanation of this approach is given in Sheffi (1985) by the following definition for
SDUE: At every instant, no driver believes that they can improve their perceived travel cost by
changing routes unilaterally. For continuous time, this definition is analytically expressed as fo-
llows. Let qod(t) be the demand for the O-D pair (o, d) at time t, f od

p (t) be the flow assigned to
route p ∈ Rod at time t, and Ĉp(t) be the least-perceived cost among the routes in Rod at time t
(which depends on the cost pattern of all routes at time t, C(t)). The authors define the probability
of choosing route p at t to go from o to d as:

P od
p (t) = P(Ĉp(t) ≤ Ĉp′(t),∀p′ ∈ Rod|C(t)); (7)

then, the SDUE is given by:

f od
p (t) = P od

p (t)qod(t)∀p ∈ Rod, ∀od, ∀t, (8)

so that ∑
p∈Rod

f od
p (t) = qod(t),∀od,∀t, (9)

and

f od
p (t) ≥ 0,∀od∀t. (10)

In another line of work, Baillon y Cominetti (2008) proposed a stochastic, although static, user
equilibrium model, which was built by applying notions related to Markovian chains, generating
what they introduced as the Markovian traffic equilibrium (MTE). Here, the flow on routes is ob-
tained by assigning flow to the outgoing arcs from each node according to the current expected
minimum costs to the destinations. Given the construction of the model under its arc-based choice
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approach, rather than in a route-based choice approach, no enumeration of the routes is required
and no independence of the route costs is assumed.

For a destination d, the uncertainty is given by the motorists’ perception of the travel costs, towards
d, on the arcs. Thus, in the case of arc a ∈ A, the perceived cost is modelled as ĉa = ca + ϵa, with
ϵa being a random variable with E(ϵa) = 0. From node n ∈ N , the perceived cost of using route
p ∈ Rd

n is Ĉp =
∑

a∈p ĉa.

The MTE model relies on the estimation of the expected minimum cost of travelling from node n
to destination d, which is Ŵ d

n = mı́np∈Rd
n
Ĉp. Thus, the expected cost of taking a route that starts

from node n choosing arc a = (n,m) to proceed to destination d is computed as:

Ẑd
a = ĉa + Ŵ d

m. (11)

Thus, given a destination d ∈ N and an arc a = (n,m) ∈ A, n ̸= d, the expected flow V d
a entering

arc a travelling towards destination d and the expected flow Xd
n from node n to d satisfy:

V d
a = Xd

nP(Ẑd
a ≤ Ẑd

b ,∀b ∈ A+
n ). (12)

Using a logit model where Ẑd
a are iid Gumbel variables with expected cost Zd

a and dispersion
parameter θ, yields:

Zd
a = ca +W d

m = ca −
1

θ
ln

∑
b∈A+

n
⋂

Rd

exp(−θZd
b ), (13)

and

P(Ẑd
a ≤ Ẑd

b , ∀b ∈ A+
n ) =

exp
(
−θZd

a

)∑
b∈A+

n
⋂

Rd

exp
(
−θZd

b

) , (14)

where a = (n,m).

3. THE MARKOVIAN DYNAMIC TRAFFIC ASSIGNMENT MODEL

As the goal of this paper is to compare the effect of the use of different criteria to reduce the set
of acrs to be considered by motorists while moving through the transport network, we use a basis
the Markovian dynamic traffic assignment (MDTA) model for general transport networks, as its
formulation is arc-based and it considers the concepto of reasonable arcs (deterministic and static).
The main aspects of the MDTA model are described in this section.

Consider a transport network represented by the digraph (N,A), where N is the set of nodes and
A is the set of arcs (A ⊆ N × N ); for each n ∈ N , A−

n and A+
n are the sets of incoming arcs to

n and outgoing arcs from n, respectively. For each arc a ∈ A, its free flow travel time ϕa and its
queue service capacity Qa are parameters assumed to be known. Next, regarding the characteristics
of the demand, there are a set of origin nodes O ⊆ N , a set of destination nodes D ⊆ N , a set of

21º Congreso Chileno de Ingenierı́a de Transporte – Valparaı́so, 23 - 25 Octubre 2023



de la Paz-Guala, Cortés, Heydecker, Rey 7

O-D pairs OD ⊆ O ×D and time-dependent demands qod(t) for each O-D pair (o, d) ∈ OD. The
analyzed period, represented by the time interval [0, T ], is also known.

As for the parts of the model, the MDTA works as the integration of three models:

1. Demand profile: For each O-D pair (o, d) ∈ OD, the time-dependent demand qod(t) from
origin o to destination d is exogenous. parts of our proposed MDTA model.

2. Traffic model: Adapting the deterministic punctual queuing model, it characterizes the rela-
tionship between inflows, outflows, and the variable part of travel times, so determining the
travel time component of the cost functions.

For each arc a ∈ A and at each time t ∈ [0, T ], the specific inflow and outflow travelling
to destination d ∈ D are denoted as Ed

a(t) and Gd
a(t), respectively, while the current length

of the queue at the arc is denoted as La(t). To fulfill the First In First Out (FIFO) rule, the
following relationships yield:

Gd
a(τa(t)) =

{
Ed

a(t) if La(τa(t)) = 0 and 0 ≤ Ea(t) < Qa,
Qa

Ea(t)
Ed

a (t) otherwise,
(15)

dLa(t)

dt
= Ea(t− ϕa)−Ga(t), (16)

where
Ea(t) =

∑
d∈D

Ed
a(t), (17)

and
Ga(τ) =

∑
d∈D

Gd
a(τ), (18)

where τa(t) is the exit time of arc a having entered it at time t. Then, according to the delay
because of eventual queues, the cost of arcs is expressed analytically as:

ca(t) = ϕa +
La(t+ ϕa)

Qa

, (19)

from where τa(t) = t+ ca(t).

3. Arc-choice model: Addapting the assignment model asociated with the Markovian Traffic
Equilibrium (MTE) concept by Baillon y Cominetti (2008), the model applies a logit model
on the current expected minimum costs to destinations to distribute the flow rate at each
node among its outgoing arcs elegible for being assigned with positive inflow (by default, the
reasonable arcs).

For each destination node d ∈ D, for each arc a = (n,m) ∈ A and at each time t ∈ [0, T ],
the expected minimum cost of going from n to d by choosing arc a, entering it at t, denoted
Zd

a(t), is computed as:

Zd
a(t) = ca(t)−

1

θ
ln

∑
b∈A+

m

exp
(
−θZd

b (τa (t))
) , (20)
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while the expected minimum cost of going from node n to destination d, starting at t, denoted
as W d

n(t), is given by:

W d
n(t) = −

1

θ
ln

 ∑
a=(n,m)∈A+

n

exp
(
−θ

(
ca(t) +W d

m (τa (t))
)) . (21)

Therefore, from expressions (20) and (21), for each destination node d ∈ D, for each arc
a = (n,m) ∈ A and at each time t ∈ [0, T ], the following equations hold:

Zd
a(t) = ca(t) +W d

m (τa(t)) , (22)

and

W d
n(t) = −

1

θ
ln

∑
a∈A+

n

exp
(
−θZd

a(t)
) . (23)

Then, for each destination node d ∈ D, the assignment is performed according to two cases:
(1) for each node n ∈ N such that (n, d) /∈ OD (nodes that are not origins for destination d),
for each arc a ∈ A+

n and at each time t ∈ [0, T ], the inflow to arc a travelling to destination d
is given by:

Ed
a(t) =


exp

(
−θZd

a (t)
)∑

b∈A+
n
⋂

Rd

exp
(
−θZd

b (t)
) ∑

b∈A−
n

Gd
b(t) if a ∈ Rd,

0, otherwise;

(24)

and (2), for each o ∈ O such that (o, d) ∈ OD, for each arc a ∈ A+
o and at each time

t ∈ [0, T ], the inflow to arc a travelling to destination d is given by:

Ed
a(t) =


exp

(
−θZd

a (t)
)∑

b∈A+
o
⋂

Rd

exp
(
−θZd

b (t)
)
∑

b∈A−
o

Gd
b(t) + q(o,d)(t)

 , if a ∈ Rd,

0 otherwise.

(25)

4. REDUCTION OF ARC OPTIONS: SIMMULTANEOUSLY DETERMINISTIC/ STO-
CHASTIC AND STATIC/ DYNAMIC APPROACHES

With the motivation of bring the formulational aspects closer to what can be experienced in real-life
situations, it would be desireable to find different type of criteria that motorists take into account
to decide wether or not an option to move forward to, in our case arcs, is actually an option to be
considered to choose.

Considering the intuition just presented, we assume that motorists label an arc as reasonable or
not, and that they consider only reasonable arcs as options to move forward to. To define this

21º Congreso Chileno de Ingenierı́a de Transporte – Valparaı́so, 23 - 25 Octubre 2023



de la Paz-Guala, Cortés, Heydecker, Rey 9

reasonability concept, we preliminarly consider the combination of simmultaneously pure determi-
nistic/stochastic and pure static/dynamic approaches, in order to determine different types of sets
of reasonable arcs, as shown in Table 1.

Deterministic Stochastic
Static Set of reasonable arcs Expected set of reasonable arcs
Dynamic Dynamic sets of reasonable arcs Expected sets of reasonable arcs

Tabla 1: Types of reasonability according to combinations of mixed approaches

The “reasonability” concept comes originally from Dial (1971), where it is applied, for the case
of stochastic traffic assignment, to routes instead of arcs and O-D pairs instead of destinations. In
this article, a route is said to be reasonable if the minimum cost from the origin to its initial node
is less than the minimum cost from the origin to its final node and, simmultaneously, the minimum
cost from its final node to the destination is less than the minimum cost from its initial node to the
destination.

In what follows, let us denote the minimum cost from a node i to a destination node d at an instat
t as Sd

i (t). Also, and considering the definition of expected minimum costs from a node, expressed
by Equations 21 and 23, let us denote the constant minimum cost and constant expected minimum
cost from a node i to a destination d associated with a non-congested network as Sd

i and W d
i ,

respectivelly.

4.1. Deterministic and static approach

This approach, embedded by default in the original formulation of the MDTA, implies that mo-
torists have a correct perception of the cost of a non-congested network, which they consider as
the only criterion to label an arc. Given this, the arc costs are given by the free flow travel times,
meaning that the costs will be constant. Thus, the application of the reasonability concept under
this approach leads to a fixed set of arcs.

Formally, for each destination node d, we have the set of reasonable arcs towards d defined by the
set of arcs (i, j) ∈ A such that, in a non-congested network, the minimum cost from j to d is not
greater than the minimum cost from i to d. The set of reasonable arcs towards d is then given by:

Rd = {(i, j) ∈ A : Sd
j ≤ Sd

i }. (26)

4.2. Stochastic and static approach

In this approach, motorists have an imperfect perception of the cost of a non-congested network
and, as the previous case, this is the only criterion to label an arc. Arc costs are, once again, given
by the free flow travel times and, thus, the expected minimum costs will be computed according to
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them, remaining constant during the analysis. The application of the reasonability concept under
this approach, as in the previous case, leads to a fixed set of arcs.

Formally, for each destination node d, the expected set of reasonable arcs towards d is defined by
the set of arcs (i, j) ∈ A such that, in a non-congested network, the expected minimum cost from j
to d is not greater than expected the minimum cost from i to d. The expeted set of reasonable arcs
towards d is then given by:

R
d
= {(i, j) ∈ A : Zd

j ≤ Zd
i }. (27)

4.3. Deterministic and dynamic approach

Under this approach, motorists have a correct perception of costs at all times in the network. Given
this, the arc costs are given by the time-dependent costs. Thus, the application of the reasonability
concept under this approach leads to sets of arcs defined for each instant of the analysis.

Then, formally, for each destination node d and at each instant t ∈ [0, T ], we have the set of
reasonable arcs towards d at t defined by the set of arcs (i, j) ∈ A such that the minimum cost
from j to d at t is not greater than the minimum cost from i to d at t. Then, at time t, the set of
reasonable arcs towards d is given by:

Rd(t) = {(i, j) ∈ A : Sd
j (t) ≤ Sd

i (t)}. (28)

4.4. Stochastic and dynamic approach

Finally, under this approach, motorists have an imperfect perception of costs at all times in the
network. Given this, the expected minimum travel times are obtained according to time-dependent
costs. Thus, as in the previous case, the application of the reasonability concept under this approach
leads to sets of arcs defined for each instant of the analysis.

Then, for each destination node d and at each instant t ∈ [0, T ], we have the set of reasonable arcs
towards d at t defined by the set of arcs (i, j) ∈ A such that the expected minimum cost from j to
d at t is not greater than the expected minimum cost from i to d at t. Then, at time t, the expected
set of reasonable arcs towards d is given by:

R
d
(t) = {(i, j) ∈ A : Zd

j (t) ≤ Zd
i (t)}. (29)

5. SOLUTION ALGORITHM FOR REASONABILITY APPLICATION

The MDTA model is solved by a solution algorithm, a repeated recursive processing of Dial’s
algorithm (Dial, 1971) in inverse order, over a time-discretization of the analized time period.
Along with the initial information needed for the formulation, an exogenous dispersion parameter
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θ is needed, fro where K time increments are obtained. The outputs are two hypermatrices E =(
kE

d
a

)
, G =

(
kG

d
a

)
(a ∈ A, d ∈ D, k = 1, ..., K) of size |A|× |D|×K and L = (kLa) (a ∈ A, d ∈

D, k = 1, ..., K) of size |A| ×K . Here, given a ∈ A, d ∈ D and k ∈ {1, ..., K}, kE
d
a and kG

d
a are

the inflow and outflow of arc a going to destination d during time increment k, respectively, and
kLa is the queue length on arc a that will be encountered by traffic that enters at time k∆t.

The algorithm starts by setting initial values. It also computes the set of reasonable arcs or the
expected set of reasonable arcs, for the deterministic or the stochastic reasonability approach, res-
pectively, according to a non-congested network. Then, at each time increment k works as follows:

1. Backwards: Starting from each destination node d, it computes the expected minimum cost
of using each node and each arc to reach d, according to discretised versions of Equations
(20) and (21);

2. Reasonability check: If the reasonability approach is static, the set of reasonable arcs/ expec-
ted set of reasonable arcs are the same as the ones obtained at the initialization. Otherwise, if
it is dynamic, the set of raesonable arcs/expected reasonable arcs is updated according to the
current arc-cost configuration.

3. Forwards: For each destination d and from each node i, it performs the assignment by split-
ting the aggregated flow rates (going to d) at i among its outgoing arcs (the ones that are
reasonable towards d) as inflows according to discretised versions of Equations (24) and
(25). It then computes the corresponding outflows and queue lengths according to discretised
versions of Equations (15) and (16);

4. It computes the costs of using each arc having entered it at k, according to a discretised
version of Equation (19);

5. If there are no more flows to assing and no more queues to empty, the algorithm ends, other-
wise, it continues to time increment k + 1, repeating the process.

We have implemented the MDTA algorithm in MATLAB; in section 6 we address different aspects
related to the application of the reasonability concept and its effect on the assignment.

A detailed analytical description of the algorithm is presented in Appendix A.

6. EFFECTS OF APPLICATION OF THE REASONABILITY CONCEPT

To give an insight of how the MDTA model, under different reasonability approaches, behaves op-
posed to existing literature, we ran analyses in order to contrast it with comparable contributions.
To do this, we choose the assignment approach associated with the SDUE by Han (2003), discussed
earlier in section 1 and described in section 2. We consider this approach to be the most suitable
match for comparison with our model. In fact, its dynamic nature comes from time-dependent de-
mand rate functions; its stochasticity comes from the uncertainty in costs perceptions, represented
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through a logit rule in the choice model; and it applies the deterministic punctual queuing model as
traffic model. However, the fact that it is route-based, while ours is arc-based, sets the nature of the
differences between the approaches.

We consider the results presented in Han (2003) for its largest addressed case, which is the Sioux
Falls Network with underlying digraph (N,A), represented in Figure 1 (LeBlanc, 1975), with confi-
gurations of arc parameters shown in Tables 2 and twelve O-D pairs shown in Tables 3 in Appendix
??, respectively. All of the O-D pairs are associated with the same demand rate profile shown in
Figure 2. For the logit specifications, three values for the dispersion parameter θ are considered:
0,01min−1, 0,04min−1 and 0,1min−1, while for the discretisation a timestep size of ∆t = 1min
is considered for a period of T = 60min.

Figura 1: The Sioux Falls Network. Arc label next to each arc

Figura 2: Demand [veh/min] for each O-D pair for the Sioux Falls network in Han (2003)
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a ϕa [min] Qa [ veh
min

] a ϕa [min] Qa [ veh
min

] a ϕa [min] Qa [ veh
min

]
1 6 65 27 5 50 52 2 45
2 2 55 28 4 45 53 3 45
3 6 65 29 3 40 54 5 50
4 2 60 30 3 45 55 3 55
5 2 55 31 5 55 56 6 55
6 5 60 32 5 50 57 3 40
7 5 60 33 3 60 58 3 45
8 5 60 34 4 50 59 4 50
9 3 50 35 5 60 60 6 55
10 5 55 36 3 60 61 4 50
11 3 50 37 6 65 62 3 40
12 3 50 38 6 65 63 4 45
13 2 50 39 2 60 64 3 40
14 2 60 40 4 50 65 2 50
15 3 50 41 4 50 66 3 50
16 3 45 42 3 40 67 3 45
17 3 40 43 4 45 68 4 45
18 5 50 44 4 50 69 2 50
19 3 45 45 3 40 70 4 40
20 3 40 46 3 45 71 3 40
21 3 45 47 2 45 72 4 40
22 2 45 48 3 40 73 2 40
23 2 50 49 2 45 74 2 60
24 3 45 50 3 55 75 3 50
25 2 45 51 3 45 76 2 40
26 2 45

Tabla 2: Free flow travel time ϕa [min] and queue service capacity Qa [veh/min], of each arc
a ∈ A, in Han (2003)

Origin nodes Destination node
18 5

14,22 8
20 9

1,13 10
2,6,7 15

3 16
4,12 19

Tabla 3: O-D pairs for the Sioux Falls network in Han (2003).

6.1. The effect of reasonability under a deterministic and static approach

In this subsection, we present results on the implementation of the reasonability concept under a
deterministic and static approach. In practical terms, we have a single set of reasonable arcs fixed
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throguh the whole analysis, obtained for a cost configuration of a non-congested arc, thus, with arc
costs equal to their respective free-flow travel times.

Recall that a reasonable arc is defined according to a destination. Figure 3 shows the subnetworks
generated by the reasonable arcs towards destination nodes 19 (left) and 5 (right). In darker color we
mark the arcs that are actually assigned with positive inflow. Notice that the concept of reasonable
arc does not depend on the stochastic characteristics of our model; thus, regardless of the θ value
been used, the set of reasonable arcs towards a fixed destination remains the same.

Figura 3: Destinations (nodes 19 and 5) in thick squares nodes and their respective origins in thick
round nodes. Reasonable arcs towards each destination in grey and arcs with positive flow in black

Given the application of the reasonability arc concept, our proposed MDTA approach results in sets
of 36 arcs to be considered to travel to destination nodes 19 and 5, respectively, and actually assigns
positive inflow to 26 and 12 of those arcs, respectively, as summarized in Table 4.

to destination 19 to destination 5
no reasonability reasonability no reasonability reasonability

Total arcs 76 76 76 76
Reasonable 76 38 76 38
Positive flow 76 26 76 12

Tabla 4: Effect on number of arcs when applying the reasonability concept

We consider these results worth being highlighted, as they intuitively show a more realistic scenario
in which the whole network is not forced to move flow through all arcs and thus, through all
possible routes. Instead, the MDTA just pushes flow through the subnetworks composed of arcs
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that are convenient for motorists to move forward to, in our case, through applying the reasonable
arc concept.

Figures 4 and 5 depict the plots of inflow rate evolution for arcs 24 and 29 respectively (from Sioux
Falls network in Figure 1), by presenting the results of the SDUE approach from Han (2003) and
our proposed MDTA approach. We recall that the presented plots correspond to aggregated inflows
of each arc, meaning that they represent the total flow that has been assigned to each arc, regardless
of their specific destinations. From both Figures, 4 and 5, there are two aspects that are worth to
highlight:

We first note that they show a similar behaviour before changes on the dispersion parameter
θ. This is consistent with what can be expected from both approaches, as θ adjusts the level
of desaggreation of the flows to be split among the available options. The greater the θ value
is, the less disperse the model behaves, meaning that the options that are perceived as more
attractive are assigned with more inflow (and the opposite to those that are less attractive).

Then, we note that the MDTA presents mainly higher levels of inflow rates associated with
each arc, more noticeable in the case of arc 29 (Figure 5). This is an effect that comes from the
fact that there are less options that are considered by motorits, given the assumption that they
travel only through reasonable arcs. Those arcs that are considered, given that are reasonable,
are assigned with larger flows. Recalling Figure 3, we note that arcs 24 and 29 are reasonable
towards destination 19 but not to destination 5. In fact, our results show that both arcs are
reasonable towards three of the destinations (nodes 8, 16 and 19).

Figura 4: Inflows of arc 24 for the different θ [min−1] values. SDUE on the left, MDTA on the right

Figura 5: Inflows of arc 29 for the different θ [min−1] values. SDUE on the left, MDTA on the right

This graphic part of the analysis helps corroborate the consistency of the outputs of our model, as
they behave accordingly when compared to those of the SDUE, and also the differences between
them are consistent with the nature of the features of our approach.
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To compare in a global scale the results of both approaches, we use as indicators the total travel
cost and the total queuing delay, analytically expressed as

TC =

∫
t

∑
a

Ea(t)ca(t)dt, (30)

TD =

∫
t

∑
a

Ea(t)
La(t)

Qa

dt, (31)

respectively (Han, 2000). The first indicator represents the total time incurred beacuse of the tra-
vels of all motorists, while the second one represents the total time spent in queues by all motorists.
Next, in Table 6.1 we present the values of this indicator, of both approaches, for the three imple-
mented values of the dispersion parameter θ.

θ [min−1] 0.01 0.04 0.10
model SDUE MDTA SDUE MDTA SDUE MDTA
TC 126841 99342 125460 98893 123634 98268
TD 14271 5676 13054 5729 11515 6071

Tabla 5: Comparison of costs indicators [min] for the different θ values

From Table 6.1 we note that our proposed MDTA model results in both of the indicators being less
than those of the SDUE in each one of the three implemented cases. In each case, the TC indicator
for the MDTA model is never greater 80 % of the TC for the SDUE, while the TD indicator for
the MDTA model is around 50 % of the TD for the SDUE.

θ [min−1] 0.01 0.04 0.10
model SDUE MDTA SDUE MDTA SDUE MDTA
TD/TC[ %] 11.25 5.71 10.40 5.79 9.31 6.18

Tabla 6: Comparison of percentage of delays beacuse of queues over total cost for the different θ
values

Another noticeable result comes from the information in Table 6.1. There, we present the percen-
tage of the total cost associated with the total time that all motorists spent in queues, for both the
MDTA and the SDUE approaches and for the three θ values. In all cases, the MDTA results in lower
percentages than those of the SDUE, meaning that, under our approach, motorists spent less of their
time stucked in queues and more of the time actually moving through the transport network. This,
added to the fact that motorists only travel through arcs that are reasonable and, thus, are moving
closer to their destination, can be understood as that not only motorists spend more of their time
effectivelly moving, but actually moving forward and closer to their destinations.

6.2. The effect of reasonability under a dynamic approach

While our interest is to contrast the use of different approaches to define the reasonability of an
arc, in this particular case where the approach is dynamic, independently of it is deterministic or
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stochastic, we rely on a previous conclusion present on literature.

In Han (2003) a similar question, regarding the applicability of a reasonability concept under a
dynamic approach, is addressed in order to be applied on his route-based stochastic DTA model.
He elaborates, and concludes, that trying to label an option, in our case arcs, as reasonable or not
in a dynamic way leads to unreliable traffic assignments.

To understand illustratively the intuition behind Han’s conclusion, let us consider a node i with
two outgoing arcs, a and b. Now, in a discretized context, let us consider that, because of the cost
configuration of arcs, at time increment k arc a is the single reasonable arc from node i, then
the total of flow rate from i is assigned to a, increasing its costs. Because of this, in the next time
increment k+1, the cost of a is such that it is not reasonable anymore and arc b becomes the current
single reasonable arc, assigning all flow to b. This leads to an oscillatory pattern that, when trying
to explain it according to motorists behavior, means that at one time increment all motorists choose
one arc and at the next one all motorists choose the other one and so on, originating a situation
hardly possible in real life scenarios.

7. FINAL REMARKS AND CONCLUSIONS

Our main contribution is the embedding of the MDTA model for general transport networks, whe-
re motorists decide how to move forward considering the remaining part of their trip and does
not decide according to his/her origin once they enter the transport network. with the concept of
reasonable arc towards destinations. To define such arcs we consider different approaches accor-
ding to if wether they consider uncertainty (determinsitic or stochastic) and wheter they consider
time dependency (static or dynamic). Then, we assume that motorists travel through reasonable
arcs only. The MDTA model has properties that are not usually found in DTA models from the
literature, particularly in approaches that consider uncertainty. Given the arc-based approach rather
than the usually assumed route-based approach, along with the within-arc interactions defined and
formulated for the traffic model, the MDTA framework allows working with overlapping routes.
This relevant aspect comes from the model of route choice as a recursive decision process over the
arcs. From applying this reasoning, independence on the route costs is not assumed, as the formu-
lations are constructed according to the arcs. Thus, the only aspect regarding routing behaviour,
which is the computation of the expected minimum costs from a current node to the destination
experienced by the motorist, is constructed through nested arc cost operators. Additionally, route
enumeration, usually applied to analyse and compare motorists’ options, is not required. In another
aspect, even though the arc-choice model assigns the inflows according to the expected minimum
costs through a logit rule, it is not limited only to this: given the model construction, there is the
potential of using different models to perform the assignment. The same can be concluded for the
cost functions, where other models, apart from the deterministic point queue model that we use in
this paper, could be used.

Another relevant contribution of our approach is the MDTA algorithm. The method allows obtaining
an assignment for a discretised version of the problem and thus an approximated solution for the
original version (which considers continuous time). The method is able to adapt to each proposed
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version of the reasonability concept, depending on its approach. It works efficiently, considering
that the computational effort in the algorithm’s execution could become important since a dynamic
and repeated computing of the flow assignment has to be performed. In addition, the construction
of the MDTA algorithm allows initialization with non-empty transport networks. From this feature,
we can study how a pre-loaded network empties over time if an MDTA approach is applied. Even
though this property is not developed further here, we highlight is because it emphasises the broader
applicability of the MDTA model formulation and its solution method. Our proposed method is a
remarkable accomplishment, as dynamic traffic assignment solution methods are already complex
to deal with and the MDTA algorithm that we have developed is an efficient method that solves
our proposed arc-based DTA approach through an elaborated dynamic programming algorithm
that defines a routine that ensures the fufillment of the FIFO rule, a defining achievement of this
research.

From our comparison analyses on the behavior of the MDTA model embedded with the reasonabi-
lity concept, we have that the MDTA model behaves consistently opposed to Han’s approach. Our
results show that the MDTA leads to lower costs indicators than those of the SDUE while presen-
ting an use of arcs close to what can be expected in real scenarios. Also, the fact that routes are
recursevely formed while traveling, can be understood as more instances of choice for motorists
when compared to the route-based SDUE model.

Among the potential research opportunities and extensions, particularly on the MDTA approach
with the integration of the reasonability concept, we are especially interested in the following as-
pects:

Consider reasonabilty fexibly on the time-dependency aspect, in the sense of defining a midd-
le point bewteen the stactic and dynamic approaches. This can be addressed by updating
periodically, and not at each time increment, the set of reasonable arcs/expected reasonable
arcs;

Consider, instead of the sets of arcs resulting from the application of the reasonability con-
cept, the notion of social rerouting, as in Eikenbroek et al. (2022).

Consider, instead of the sets of arcs resulting from the application of the reasonability con-
cept, the notion of consideration sets, as in Arriagada et al. (2022).
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APPENDICES

A. DETAILED FORMULATIONAL DESCRIPTION OF THE MDTA ALGORITHM

The following routine represents the complete formulational proceedings of the MDTA algorithm
(section 5):

Initial settings: Parameters, sets, and initial values for the structures that change over every
time increment are set.
STEP 0: INITIALIZATION:
For each arc a ∈ A and at each k = 1, ..., K, set kca = ϕa.
For each arc a ∈ A, set 0La = 0.
For each destination d ∈ D and for each node n ∈ N , calculate the minimum cost Sd

n from
node n to d.
Set an order πd of all nodes in increasing Sd

n.
Identify the set of reasonable arcs/expected set of reasonable arcs towards d, given by

Rd =
{
(n,m) ∈ A : Sd

n ≥ Sd
m

}
/R

d
=

{
(n,m) ∈ A : Zd

n ≥ Zd
m

}
. (32)

For each O-D pair (o, d) ∈ OD and each time increment k = 1, ..., K, calculate the average
demand as

kq
(o,d) =

∫ (k+1)∆t

t=k∆t

q(o,d) (t) dt

∆t
. (33)

Time increment update:
At each time increment k = 1 to k = K until the stop condition is satisfied:

• STEP 1: BACKWARD:
Calculate the expected minimum costs kW

d
n from each node n ∈ N to each destination

d ∈ D

kW
d
m = −1

θ
ln

∑
b∈A+

m

exp
(
−θkZd

b

) . (34)
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Calculate the expected minimum costs kZ
d
a using each reasonable link a ∈ A

⋂
Rd to

each destination d ∈ D:

kZ
d
a =k ca +k+⌊τa(k∆t)/∆t⌋ W

d
m. (35)

• STEP 2: COMPUTING OF ASSIGNMENT FACTORS:
For each destination d ∈ D and for each arc a ∈ A, calculate the assignment factor as

kF
d
a =

{
exp

(
−θkZd

a

)
if a ∈ Rd (a is reasonable towards d)

0 otherwise.
(36)

• STEP 3: REASONABILITY CHECK:
If the reasonability approach is dynamic, for each destination d ∈ D, update the set of
reasonable arcs/expected set of reasonable arcs towards d, given by

kR
d =

{
(n,m) ∈ A :k S

d
n ≥k S

d
m

}
/kR

d
=

{
(n,m) ∈ A :k Z

d
n ≥k Z

d
m

}
. (37)

• STEP 4: FORWARD:
For each node n ∈ N , check if there is any flow rate to be assigned from n, which
happens if

∑
d∈D

∑
b∈A−

n

kG
d
b +k q

(n,d) +

∑
a∈A+

n

k+ϕa−1L
d
a

∆t

 > 0, (38)

where kq
(n,d) = 0 if (n, d) /∈ OD and k+ϕa−1L

d
a is the queue length of motorists towards

destination d from the previous time increment, and check if the end of its outgoing arcs
is reached during the time period,

k + máx
a∈A+

n

{ϕa} ≤ K. (39)

If the conditions are fulfilled, for each arc a ∈ A+
n , calculate

kE
d
a =


kF

d
a∑

a′∈A+
n
⋂

Rd

kF
d
a′

 ∑
bd∈A−

n

kG
d
b +k q

(n,d)

 , if a ∈ Rd,

0, otherwise.

(40)

if (n, d) ∈ OD, otherwise

kE
d
a =


kF

d
a∑

a′∈A+
n
⋂

Rd

kF
d
a′

∑
b∈A−

n

kG
d
b , if a ∈ Rd,

0, otherwise.

(41)

21º Congreso Chileno de Ingenierı́a de Transporte – Valparaı́so, 23 - 25 Octubre 2023



de la Paz-Guala, Cortés, Heydecker, Rey 23

Then, if the arc has not exceeded its queue service capacity Qa, which happens if∑
d∈D

(
k+ϕa−1L

d
a

∆t
+k E

d
a

)
≤ Qa. (42)

calculate the outflow rate as

k+ϕaG
d
a =

k+ϕa−1L
d
a

∆t
+k E

d
a , (43)

and set the queue length as
k+ϕaL

d
a = 0. (44)

Otherwise, if condition (42) is not met, set Q← Qa and, for all d ∈ D, set
k+ϕa,k+ϕaS

d
a ←k E

d
a and k+ϕaG

d
a ← 0, then from l + ϕa such that∑

d′∈D l+ϕa,k+ϕaS
d′
a > 0 and

∑
d′∈D m+ϕa,k+ϕaS

d′
a = 0 for m = 1, ..., l − 1, perform the

following subroutine:

◦ If
∑

d′∈D l+ϕa,k+ϕaS
d′
a ≤ Q, then update

k+ϕaG
d
a ← k+ϕaG

d
a + l+ϕa,k+ϕaS

d
a , for all d ∈ D, (45)

k+ϕa,k+ϕaS
d
a ← 0, for all d ∈ D, (46)

Q← Q−
∑
d′∈D

l+ϕa,k+ϕaS
d′

a . (47)

Then, if Q = 0, end subroutine, otherwise, run it again.
◦ Otherwise, update

l+ϕa,k+ϕaSa ←
∑
d′∈D

l+ϕa,k+ϕaS
d′

a , (48)

k+ϕaG
d
a ← k+ϕaG

d
a +

l+ϕa,k+ϕaS
d
a

l+ϕa,k+ϕaSa

Q, for all d ∈ D, (49)

k+ϕa,k+ϕaS
d
a ←k+ϕa,k+ϕa Sd

a −
l+ϕa,k+ϕaS

d
a

l+ϕa,k+ϕaSa

Q, for all d ∈ D, (50)

Q← 0. (51)

and end subroutine.

Calculate queue lengths as

k+ϕaLa = ∆t
∑
d∈D

k∑
l=1

l+ϕa,k+ϕaS
d′

a . (52)

• STEP 5: COST UPDATE:
For each arc a ∈ A and each time increment k ∈ K, use the assigned flows to update
the queue lengths and link costs

k+ϕaLa =máx
(
0,(k+ϕa−1) La + (kEa −Qa)∆t

)
, (53)

kca =ϕa +
k+ϕaLa

Qa

. (54)
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• STEP 6: STOP CRITERIA:

If k ≤ K


If kE

d
a = 0 ∀a ∈ A,∀d ∈ D


If

∑
a∈A

l=K∑
l=k

l+ϕaLa = 0, then Stop.

Otherwise, set k = k + 1 and return
to STEP 1.

Otherwise, set k = k + 1 and return to STEP 1.
(55)
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