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ABSTRACT

In this article, we introduce dual-system theory to travel behavior literature, which allows a better
understanding of the non-compensatory nature of habits in commuting decisions. In a laboratory
task, we show how the individual degree of habitual behavior can be estimated with Reinforce-
ment Learning. Furthermore, we show that the exploration of new (and better) alternatives in a
transportation choice scenario is hindered when subjects develop habit-like strategies. Our results
suggest that sub-optimal routes in real life may be due to sub-exploratory behavior, who may benefit
from policies aimed at prompting exploration of new alternatives once they are implemented.

1. INTRODUCTION

During the first week of February 2014 there was a major change in the daily routine of Londoners.
After the announcement that redundancies and ticket office closures would occur, the Rail Maritime
Transport union went on a 48 hour strike which resulted in more than 60% of the stations being
at least partially closed (Larcom et al., 2017). The primary implication of this shock was that it
compelled commuters to explore new routes they would not have otherwise chosen for their daily
trips. Larcom et al. (2017) found that around 5% of commuters stuck with alternative routes even
after the strike ended, i.e., for some reason they preferred the route they were forced to explore.
A likely hypothesis is that habits caused sub-exploration of the available routes prior to the strike.
Our work develops a possible explanation using the dual-system theory of behavior, a theory that
is widely accepted in psychology and neuroscience (Perez & Dickinson, 2020; Daw & O’Doherty,
2013).

This natural experiment provide more evidence to question the canonical assumptions deployed in
the Random Utility Models (RUMs, McFadden (1974)) widely used in travel behavior research.

21º Congreso Chileno de Ingenierı́a de Transporte – Valparaı́so, 23 - 25 Octubre 2023



Henrı́quez-Jara, Guevara, Jimenez-Molina 2

This theory assumes that commuters make choices based on the subjective satisfaction or utility
provided by each of the option’s attributes (e.g. travel time, price, and crowding). More importantly,
RUM assumes compensatory behavior, i.e., if any attribute of an alternative changes, the utility that
this alternative gives to an individual can be recovered by properly varying the other attributes.
For example, the disutility of higher prices could be compensated by a reduction in travel time or
other relevant attributes. Compensatory behavior is key for welfare analysis, including the critical
concept of “value of time” in transportation.

However, empirical data of transport choices (as Larcom et al. (2017)) have shown that people
are neither always utility maximizers nor do they behave in a compensatory way. People may be
“rational”, but they do not act as “global utility maximizers” (Miller, 2020). For this reason, travel
behavior theories have attempted to incorporate psychological aspects to gain a deeper understand-
ing of the underlying processes behind real-life choices.

Most travel studies incorporating psychological aspects still appeal to strong rationality and com-
pensatory behavior assumptions. The role of the unconscious or automaticity in decision-making
has been underexplored (Vaa, 2014). When taking into consideration automaticity factors, the ra-
tionality assumptions shift to bounded rationality assumptions: people are rational but with limited
mental capabilities.

The travel behaviour literature has made progress in bounded rationality models (Rasouli & Tim-
mermans, 2014). However, in our view, one of the most important gaps in the travel behavior
literature is how habitual behavior is conceived.

Typically, the influence of habits on choices is modeled in two different ways: based on the habits
persistence model (Heckman, 1981) (basically, with lagged variables or latent Markov models), or
with a latent inertia (Gao et al., 2020). However, neither of these methods satisfy the most important
characteristic of habitual behavior: the lack of a conscious deliberation process.

In the cognitive psychology and neuroscience literature, it is a long-standing idea that a rewarded
behavior (a behavior followed by a positively valued outcome) which is consistently performed
in a similar situation renders the behavior automatic and independent of the expected utility of its
outcomes or consequences, which is defined as habitual behavior (Dickinson & Balleine, 1994).
Clearly, in the presence of habits, there is no compensatory behavior, which was pointed out by
Gärling & Axhausen (2003), but has not yet been reflected in choice modeling.

Under the above definition of habits, it is necessary to know if decisions are deliberated or not
to classify them as habitual. This paradigm, the duality of deliberated and automatic behavior,
is the basis of dual-system theory. In dual-system theory, human (and animal) behavior can be
broadly represented by two types of learning models, the Model-free (MF) and the Model-based
(MB) (Gershman, 2015). MF behavior represents habit-like strategies, and MB behavior represents
utility-based (or goal-directed, in the psychological jargon) strategies. However, both systems in-
teract, causing the observable behavior to be a mixture of both systems.

To detect MB and MF behavior, Daw et al. (2011) developed an experimental task, known as the
Markovian Two-Step Task, which is nowadays well-established on the cognitive psychology and
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neuroscience literature. In this task, subjects choose between two options with stochastic reward
probabilities. The responses are then modelled using reinforcement learning algorithms that allows
the identification of the importance of each system in the behavior of each participant.

Using Daw et al.’s (2011) task in a transportation scenario, we test the relationship between the type
of behavioral strategy deployed by subjects (MF or MB) and the degree to which those strategies
are correlated with exploratory behavior in a transportation scenario.

The main contributions of this article are: (1) the introduction of the concepts of MB and MF be-
havior to the transportation and discrete choice literature, which allows a better understanding of
habits in commuting behavior, (2) providing a modeling framework to estimate the degree of habit-
ual (automatic) behavior for each individual, and (3) evidence that habit-like behavior is inversely
related to exploration of new alternatives, which, to the best of our knowledge, is a novel result in
both transportation and psychology.

The remaining of this article is structured as follows. In the second section we depict the exper-
imental task, and in the third section we describe the computational modeling of behavior. We
discuss the results in the last section of the paper. The Appendix offers a brief overview of the main
RL concepts, necessary to follow the methods and discussion of this article.

2. A TRANSPORTATION MF/MB DISTINCTION EXPERIMENTAL TASK

An scheme of the experimental task is shown in 1. The main feature of this Two-step task is that it
allows the experimenter to determine if subjects’ choices are based on the transition probabilities
between states (and thus rely on MB strategies), or whether they are simply repeating previous
choices based on their past reward outcomes (indicating the use of MF or habitual strategies).

The task comprises two phases (1). The first phase is composed by two stages. In the first stage,
participants must choose which of two neighbors to ask for a ride to the bus stop. Our cover story1

for the experiment explained to participants that their neighbors did not always go to the same bus
stop. For instance, neighbor A might go to the red bus more often while neighbor B would go to
the blue bus more often. In the second stage, participants did not make any further choices, and
the bus either arrive on time or late. They were told this uncertainty was due to congestion. In
practice, this means that the reward of trial t (rt) is positive when the bus arrives on time (rt = 1)
and negative when it does not (rt = −1) 2. The probability of receiving a reward was modeled by
a Gaussian random walk with SD = 0.025 and reflecting boundaries at 1 and 0, which ensured
that participants had to continually assess which option was best at any point during the task,
encouraging continuous learning. The reward probability of the blue bus started at 0.5 and the
probability of the red bus started at 0.3, which guarantees E(rt|blue bus) > E(rt|red bus). It
is important to mention, that participants were told they could leave the experiment at any time,

1The cover story was shown to participants in a video. A version in English is available at https://youtu.be/
39QevydE oE

2Fujii & Kitamura (2003) proposed a similar assumption, arguing that people frame the travel time in a dichotomous
way: being later or on time.
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without any consequence on the payment they were receiving.

Figure 1: A Markovian two-step task with stochastic transitions between states. Phase 1:
MB/MF distinction. At stage 1, participants make a choice between two options, in this case
between two different neighbors who will take them probabilistically, to the red bus or the blue
bus which, At stage 2, and without the participant having to make another choice, the bus reaches
its destination with two possible outcomes: get on time (signified by a green clock) or being late
(signified by a red clock). E(rt|blue bus) > E(rt|red bus). Phase 2: exploration. A new bus was
included in the choice set. The new bus had an objectively higher reward rate than the others.

The second phase aimed to measure the tendency to explore a novel alternative (Figure 1). Here, we
introduced a novel option, a new bus line with a higher reward rate than the previous two options
(probability of reward = 0.7), while maintaining the structure of the initial stage. Our hypothesis
was that the type of behavioral control (MB/MF) used by participants would affect their exploratory
behavior. Specifically, we expected that those using MF strategies would be less likely to explore
new alternatives compared to MB subjects, what would reflect in an incapacity to become fully
aware of the goodness of the green bus option. To model participants’ behavior, we used MF and
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MB RL algorithms to estimate the utility of each option on a trial-by-trial basis, and a decision rule
that assigned higher choice probabilities to options with higher expected utilities. We assumed that
decisions were driven by a convex combination of MF and MB strategies in each trial (Gillan et al.,
2015; Nussenbaum et al., 2020).

2.1. Participants and Apparatus

Participants were called through the institutional forum of the University of Chile. 34 participants
participated in this study, 15 female and 19 male, all students from the University of Chile. They
were paid CLP 8.000 (around USD 8) for their participation. All participants gave their informed
consent and were tested individually in cubicles in groups of a maximum of 4 subjects per session.
The experiment was programmed in Psychopy (Peirce, 2007) and ran on macOS Sierra (c) desktop
computers of the Transportation Laboratory at the Civil Engineering Department of the University
of Chile. The experiment received IRB approval from the Nuffield College Centre for Experimental
and Social Sciences at the University Santiago of Chile.

3. COMPUTATIONAL MODELING AND DATA ANALYSIS

To model participants’ behavior, we used a particular kind of RL algorithm called Q-learning
(Watkins & Dayan, 1992). These kinds of models are assumed to behave within Markovian chains,
where the error of the estimation in t is assumed to not be transferred to time t+ 1. For the sake of
simplicity, we will omit the error term across all the model formulation.

As explained before, we constructed a Markovian model of two stages S = {S1, S2}. The first
stage (S1) contains a set C with two alternatives, i.e. the two neighbors (C = {A,B}). The second
stage contains no alternatives to choose, but has two possible states, the red and the blue bus states
(S2 = {sblue, sred}). We denote each trial of the experiment as t ∈ {1, ..., T}, where T is the total
number of trials.

We will denote the choice in the first stage (neighbor choosing stage) by yi,t = 1, if the subject
chooses i in trial t, and yi,t = 0 otherwise. The computational modeling is based on the assumption
that, in each trial t, subjects associate a value to each alternative j (QNETt,j), which is a mixture
of the values that each cognitive system associates to each alternative (QMBt,j and QMFt,j). We
call it “value” to adopt neuroscientist’s terminology, but for general purposes it can be considered a
utility estimated as a convex combination of two utilities proceeding from different models. As we
will later discuss, the behavioral combination could be also captured with a latent class approach,
however in this article we adopted how this is modeled in human RL literature. The estimation of
QNET , QMF and QMB is detailed in the next subsection.

The RL model is fitted separately for each phase of the experiment and separately for each subject.
In the first phase, we were interested in estimating for each participant which system weighs more
on their decision (MB or MF), while in the second test phase we were interested in estimating
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which participants explored more the novel alternative.

QMF estimation (Model Free algorithm)

On each trial t, the MF system associates a value QMFt,j to each alternative j, ignoring the transi-
tion probabilities, which is the critical assumption of MF system and represents the automaticity of
behavior. QMFt,j is a learned value that is updated in each trial based on the reward prediction er-
ror (δt,1), i.e. the difference between the value associated to the alternative and the obtained reward
(Rescorla & Wagner (1972)), and a learning rate (α). Recall that stage 1 contains the alternatives,
while stage 2 contains two possible states corresponding to each bus but no choices. In the first
stage, the outcome obtained by choosing an alternative is the value associated to the subsequent
state s plus the reward rt. Then, the reward prediction error of choosing the alternative i and being
taken to a state s where the reward rt is obtained, can be estimated as the difference between the
outcome of the choice and the value associated to the alternative i in time t:

δt,1 = QMFt,s + rt −QMFt,i, (1)

where QMFt,s is the value associated to the state s ∈ S2 in trial t. Since after stage 2 just follows
the reward (no further stages), then the reward prediction error and δt,2 associated to the states s of
S2 (the buses) is given by the difference between the obtained reward rt and the value associated to
the state (bus) s in trial t:

δt,2 = rt −QMFt,s (2)

After choosing an alternative i, the subject updates its value. If she obtains something better than
expected (δt,1 > 0), then the associated value grows, otherwise it decreases. Then, for the next trial
t+ 1, the subject updates the value of the previously chosen alternative:

QMFt+1,i = QMFt,i + αt,1δt,1, (3)

where αt,1 is the learning rate. The learning rate is a free parameter that indicates at which degree
the subject’s learning process is being influenced by the reward prediction error. It can be also
interpreted, as the probability associated to replace the value QMFt,i by the value of the reward
(see eq. ??). We considered different learning rates in function of the reward prediction error, since
disappointing experiences (δ < 0) and satisfying experiences (δ > 0) may influence in different
magnitudes the learning process (Perez & Dickinson (2020). Then, αt,1 = α+ if δt,1 > 0 and α− in
other case (α+, α− ∈ [0, 1]). Note that αt,1 = 0 implies that the subject does not update the value
associated to i, while αt,1 = 1 implies that the subject completely replaces the previous value by
the reward and the value of the state s (QMFt+1,i = QMFt,s + rt). We estimated both α+ and α−.

Then, the subject updates the value of the bus corresponding to state s:

QMFt+1,s = QMFt,s + αt,2δt,2 (4)

Similarly, the learning rate αt,1 = α+ if δt,2 > 0 and α− in other case. Note that αt,2 = 0. If
αt,2 = 1, then QMFt+1,s = rt.

In this work we considered that the values associated to the non-chosen alternative and the non-
visited state in stage 2 are updated with the same process but with a null reward. This is equivalent
to define QMFt+1,i = QMFt,i(1− α) if yt,i = 0.
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QMB estimation (Model Based algorithm)

On the other side, since each task comprises 200 trials, the MB component is calculated assuming
that participants learned the transitions probabilities, which is a critical assumption, since represents
the goal-directed nature of MB system. Recall that QMBt,i can be interpreted as an expected value,
and for general purposes, as an expected utility. When assuming that subjects learned the transitions
probabilities, we are implicitly assuming that they tried to understand the dynamics of the stochastic
environment (i.e., the context of the task). QMBt,i can be formulated as depicted in eq. 5.

QMBt,i = P (sblue|i)QMBt,sblue + P (sred|i)QMBt,sred (5)

P (s|i) is the probability of going to state (bus) s in stage S2 after choosing the neighbor i. The
values QMBt,s are the values that MB system associates to each state s of stage S2. Similarly, as
above, QMBt,s are learned using a reward prediction error (δt). In this case, the reward prediction
error is the difference between the obtained reward and the value associated to the state (bus) that
corresponds to time t. Recall that the reward prediction error indicates if the result of reaching bus
s is better (δt > 0) or worse (δt < 0) than expected:

δt = rt −QMBt,s (6)

And then, on the next trial, the QMB value will be updated, generating QMBt+1,s. Here, the
learning rate (αt) controls how much does the reward prediction error weights on the learning
process, as shown in eq. 7.

QMBt+1,s = QMBt,s + αtδt (7)

In eq. 7 the learning rate also takes different values in function of the reward prediction error (δt),
as explained before (αt = α+ if δt > 0 and α− in other case). Note that αt = 0 implies that
QMBt+1,s = QMBt,s (null learning), and αt = 1 implies that QMBt+1,s = rt (the reward value
is completely transferred to the value associated to the state s).

QNET and model estimation

Finally, QNETt,j represents the mixture of both cognitive systems’ values QMBt,j and QMFt,j .
As shown in eq. 8, QNETt,j is a convex combination of both values, where ω ∈ [0, 1]3 is the rate
of MB behavior.

QNETt,j = (1− ω)QMFt,j + ωQMBt,j (8)

If ω = 1, the subject is fully goal-directed: the transition probabilities between states were learned
and considered into decision-making. Therefore, if the subject is taken to a highly rewarding state,
but because of the stochastic nature of the environment, does not get a reward, the probability of
repeating the choice should not decrease, since it is understood that it was a random event with
low probability of occurring. On the other hand, if ω = 0, it means that subject’s choices were
driven solely by the rewards obtained at the final stage. In this case, and contrary to the previous
case, if the subject is taken to a highly rewarding state, but does not get a reward, the probability of
repeating the choice should decrease.

3To constrain ω, we estimated ω∗, with ω = exp(ω∗)/(1 + exp(ω∗))
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Now, the probability of choosing the alternative i in the next trial t + 1, is given by a softmax
function (Sutton & Barto, 2020). We estimate the probability of choosing, in t + 1, the same
alternative chosen in t. Here underlies the assumption that participants decide binarily if stay with
the same alternative or not, rather than choosing between two different alternatives. The probability
is then formulated as follows:

P (yt+1,i = 1|QNETt+1,i, β) =


exp(βQNETt+1,i)

exp(βQNETt+1,i)+1
, yt,i = 1

1
exp(βQNETt+1,i)+1

, yt,i = 0

(9)

In the above formulation, the parameter β is the inverse temperature (as it is called in psychology
and neuroscience) (Sutton & Barto, 2020) or the scale parameter of RUM models. In the RUM
interpretation of the term, the probability depends on QNET plus an error term. When that error
has small variance, the scale, which is inversely proportional to the variance, is large, and the
probability is almost deterministically determined by QNET . When the error has a large variance,
the scale is small and the probability becomes close to 0.5, independent of QNET . Then, the joint
probability of the observed decisions of a specific subject can be written as:

LogLik =
T∑
t=1

∑
i∈C

log(P (yt,i = 1)(yt,i=1)) (10)

Finally, the parameters β, ω, α can be estimated by maximizing LogLik. For the estimation, all the
Q-values were initialized at zero.

Exploration

As it was explained before, in the second part of the experiment, participants were offered a third
option (another neighbor C), and were notified that a new bus had become available (a green bus).
We are now interested in the rate of exploration of the new alternative. Drawing on previous studies
(Daw et al., 2006), we consider a decision that choice of C in trial t was exploratory if and only
if QNETt,C < QNETt,j ∀j ̸= C. Otherwise, if the subject chooses the new alternative (C), but
its QNET is higher than the value of both A and B, we consider that as an exploitative decision.
In other words, an exploratory choice occurs only if there is another, previously known and better
valued alternative. Let ỹt,i indicate that the chosen alternative i had the minimum QNET , as
depicted in eq. 11.

ỹt,i =

{
1 QNETt,i < QNETt,j∀j ̸= i ∧ yt,i = 1

0 otherwise
(11)

We then defined the exploration rate ϕE of an alternative i for a specific subject as follows:

ϕE(i) =

∑T
t=1 ỹt,i
T

(12)

Which yields the proportion of exploratory choices during the second stage of the experiment. In
this case, we are interested in the exploration of C, i.e. ϕE(C) =

∑T
t=1 ỹt,C
T

.
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The question at issue was the extent to which the parameter w is correlated with the rate of ex-
ploration in this second phase. We hypothesized that a higher ω would be associated with more
exploration (or viceversa, that a lower ω would be associated with less exploration), reflecting that
MF or habit-like strategies hinder exploratory behavior. The answer to this question is novel in
both psychology and transportation.

4. RESULTS

Statistical analyses and computational modeling were performed using the R programming lan-
guage (R Core Team, 2022) in a Microsoft (c) collab space. In the first phase of the experiment,
our main objective was to estimate the parameter ω for each subject during the first stage of the
task. Then, in the second phase, for each individual we calculated the exploration metric ϕE(C)
when the new alternative was added to the set of options, and studied its correlation with the pa-
rameter ω. All parameters were estimated using maximum-likelihood through the maxLik function
in R Henningsen & Toomet (2011); Daw et al. (2011). For some participants, the parameters were
not identifiable because of invariant behavior and, for others, the parameters were identifiable, but
the likelihood ratio test was non-significant (N=5). This left 29 participants for the final analysis.

Participants clearly showed an ordered preference (C ≻ B ≻ A) in the second phase of the exper-
iment. More over, participants who preferred alternative C, obtained a better overall performance
in the second part of the experiment (arrived on time more frequently).

As hypothesized, the exploration rate showed a significant correlation with the degree of MB be-
havior (ρ = 0.493, p = 0.008). We then separated participants by the median. Participants with
ω above the median were defined as MB. Participants with ω below the median were defined as
MF. 2B, shows the proportion of exploratory choices of alternative C for MB and MF participants
when separating them using a median split. The exploration rate was on average 6.05% higher
(p < 0.001) for MB participants than for MF. Also, when we modeled the learning process of
probabilities in the MB system—rather than assuming that participants knew them from the outset
of the experiment— we found that the correlation was also significant (ρ = 0.652, p < 0.001).
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Figure 2: Habits hinder exploration of new alternatives (a) Exploration (ϕ) and MB behavior (ω)
correlation. (b) Exploration rate distribution for MB and MF subjects. Participants were divided
by a median split on ω.

5. DISCUSSION

Drawing on the literature on learning and decision making in psychology and neuroscience, we
have obtained evidence suggesting that human exploration can be sub-optimal when participants
rely on MF strategies. When participants are presented with a novel and better alternative in a
markovian two-step task, their level of exploration was inversely related to their level of MF control.

While the concept of habit underlying MF strategies is not new in psychology and neuroscience, the
exploration of this concepts in a transportation context is novel. The differentiation of behavioral
strategies as MB and MF, offers a new perspective to conceptualize commuting habits. Rather than
incorporating an inertia, model-free behavior allows for the modeling of the non-compensatory and
automatic nature of habitual choices.

From a modeling perspective, inertia has shown to be successful in explaining commuter behavior
(Valeri & Cherchi, 2016; Gao et al., 2020; Cantillo et al., 2007). However, modeling a utility-
maximizing choice in a habitual behavior context is self-contradictory. When a subject behaves
habitually, she just chooses automatically what is remembered to be of higher value. This phe-
nomenon, despite the possibility of being modeled in a plethora of different ways, has been studied
by computational neuroscientists for more than a decade. In this study, we draw on that literature to
introduce the concepts to the travel behavior literature and shed light on why individuals showing
habitual strategies may not explore new (and potentially better) alternatives. Until now, transporta-
tion researchers have addressed this problem by assuming that subjects ascribe a higher inertia to
the old alternatives (Cantillo et al., 2007; Valeri & Cherchi, 2016; Gao et al., 2020). In this paper
we offer an alternative explanation: habitual subjects are under MF control, which means they do
not try to understand their environment to maximize utility, but just choose based on what they
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remember to be a good choice.

In a real-life situation, a new transportation mode or a new available route may be underutilized just
because travelers are behaving automatically and, therefore, are not reacting to the shock of a new
(potentially better) travel alternative. Alongside transportation investments, it should be considered
sufficiently strong behavioral measures to get people off the autopilot mode and incentivize the
exploration of the new alternatives (Larcom et al., 2017). Otherwise, the investment would not
have the desired welfare effects.

The reason why a MB subject would be more likely to explore than a MF or habitual subject are
not clear. From a psychological standpoint, the question at hand is what factors would make an MB
subject more inclined to search for potentially valuable information when uncertainty is high. One
possibility is that MB subjects value information more than MF subjects, which would imply that
the motivation to seek information is higher in MB subjects. Another, not completely unrelated
possibility is that MB subjects tend to pay attention to novel events or stimuli, which is consistent
with the idea that goal-directed behavior involves monitoring potential outcomes and options in the
environment.

Our main hypothesis revolves around the potential inhibition of exploratory behavior due to the
utilization of habitual MF strategies. However, the question that arises is the underlying psycho-
logical and computational mechanisms behind this phenomenon. Two perspectives have emerged
in this regard. The first proposes that exploratory behavior is random, serving as an efficient strat-
egy to thoroughly explore all available options in the environment. However, it seems improbable
that this strategy was relevant to our subjects, given that the task was specifically designed to in-
troduce a new option, from which information should be extracted in a goal-directed manner, with
the aim of reducing uncertainty about its expected value. This aligns with the principles of directed
exploration algorithms in computer science, wherein an agent’s exploratory behavior is enhanced
through the inclusion of uncertainty, novelty, or curiosity-based incentives (Gershman, 2018).

Outside of the lab, the sensitivity of people to changes in the environment (a proxy of habitual be-
havior) can be estimated by analyzing natural experiments like shocks in the transportation system
(e.g. new metro lines), as has been studied elsewhere (Blase (1979); Arriagada et al. (2023); Ing-
vardson et al. (2023)). Transportation systems offer a natural laboratory to study repeated choices,
with nowadays extensive data available thanks to intelligent transportation systems and automatic
fare collection systems. This gives researchers in economics, psychology and transportation be-
havior the opportunity to probe behavioral patterns and factors common to different subjects which
may make them more likely to behave in a habitual/goal-directed manner.

The present experimental framework could be used to address other relevant questions in trans-
portation research. For simplicity, we have designed the reward function to yield only binary
rewards (1 in the case of “arriving on time” and 0 in the case of “arriving late”, similar to Fujii
& Kitamura (2003)). This means that the value associated to each alternative is univariate, and
that arriving on time or late has the same value for every subject. However, it is not difficult to
conceive of an experiment where other attributes are presented in the task, which can be valued
and encoded by subjects in a utility function (i.e. a continuous and subjective reward). In this
way, as experimenters, we could potentially estimate the importance of attributes for each sub-
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ject according to their own utility functions and how they are translated into choices, interacting
with a learning rate and the MB/MF rate. This could have relevant impact in the welfare analysis.
Moreover, by using RL algorithms it would be possible to model the learning of utilities (rather
than Q-values) associated to different alternatives. In this regard, a latent classes model should
permit the identification of a MF and a latent-based class. In such a model, the habitual behavior
should be represented by a model that just considers last experiences to update utilities, while the
goal-directed uses exogenous information (e.g. looking for information in traffic applications) to
understand the environment and maximize utility. This also would allow the researcher to under-
stand the nature of each class, by defining the probability of pertain to each class, for example,
as a function of the socio-demographic characteristics or latent psychological variables as stress.
However, the definition must be modified if another modeling framework is adopted. The definition
here used is widely accepted and can be directly calculated in function of the QNET (the mixture
of the QMB and QMF ). In a latent classes model, behavior mixture is done at the probability
level and therefore could not be considered as a “net utility”.

Which is the best way to model this dual behavior paradigm is an open question. Future research
should tackle model comparisons and other techniques to differentiate habitual from goal-directed
choices. Moreover, other cognitive and psychophysiological measures could provide further insight
into the underlying neurological and psychological processes involved in comparing attributes dur-
ing economic decision making (e.g. eye-tracking, physiological data) (see Hancock & Choudhury
(2023)). Furthermore, psychological theories explored in travel behavior, e.g. the TPB, could
interact with a dual system model, incorporating social norms and other people’s attitudes.

The results of this study are limited by the sample characteristics. The sample size was limited by
time constraints as the experiment was conducted in a physical laboratory in 12 one-hour blocks.
The online replication of this study is currently in progress. This will allow a larger sample size
with higher heterogeneity.

In sum, the main contributions of this article are: (1) the introduction of the concepts of MB and MF
behavior to the transportation literature, which allows a better understanding of habits in commut-
ing; (2) providing a modeling framework to estimate the degree of MF and MB for each individual;
and more importantly (3) to show that MF behavior is negatively correlated with exploration, sug-
gesting that habits may hinder the exploration of novel and potentially better alternatives. Even
when more convenient alternatives might exist, habitual subjects might prefer to stay in auto-pilot
mode, sticking with what they already know to be satisfying. Habits not only die hard, but they
also make it hard to imagine better alternative worlds.
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Cantillo, V., De Dios Ortúzar, J., & Williams, H. C. (2007). Modeling discrete choices in the
presence of inertia and serial correlation. Transportation Science, 41 (2), 195–205.

Daw, N. D., & O’Doherty, J. P. (2013). Multiple Systems for Value Learning. Neuroeconomics:
Decision Making and the Brain: Second Edition, 393–410.

Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates
for exploratory decisions in humans. Nature, 441 (7095), 876–879.

Daw, N. D., et al. (2011). Trial-by-trial data analysis using computational models. Decision
making, affect, and learning: Attention and performance XXIII, 23 (1).

Dickinson, A., & Balleine, B. (1994, mar). Motivational control of goal-directed ac-
tion. In N. J. Mackintosh (Ed.), Animal learning & behavior (Vol. 22, pp. 1–18). Lon-
don: Academic Press. Retrieved from http://doi.apa.org/psycinfo/1994-98574
-002http://www.springerlink.com/index/10.3758/BF03199951 doi: 10
.3758/BF03199951

Fujii, S., & Kitamura, R. (2003). What does a one-month free bus ticket do to habitual drivers ?
An experimental analysis of habit and attitude change. , 81–95.

Gao, K., Yang, Y., Sun, L., & Qu, X. (2020). Revealing psychological inertia in mode shift
behavior and its quantitative influences on commuting trips. Transportation research part F:
traffic psychology and behaviour, 71, 272–287.

Gärling, T., & Axhausen, K. A. Y. W. (2003). Introduction : Habitual travel choice. , 1–11.

Gershman, S. J. (2015). Reinforcement learning and causal models. In W. M. (Ed.), The oxford
handbook of causal reasoning (pp. 1–18). Oxford Library of Psychology.

Gershman, S. J. (2018). Deconstructing the human algorithms for exploration. Cognition, 173,
34–42.

Gillan, C. M., Otto, A. R., Phelps, E. A., & Daw, N. D. (2015). Model-based learning protects
against forming habits. Cognitive, Affective and Behavioral Neuroscience, 15 (3), 523–536.
doi: 10.3758/s13415-015-0347-6

Hancock, T. O., & Choudhury, C. F. (2023). Utilising physiological data for augmenting travel
choice models: methodological frameworks and directions of future research. Transport Re-
views.

21º Congreso Chileno de Ingenierı́a de Transporte – Valparaı́so, 23 - 25 Octubre 2023

http://doi.apa.org/psycinfo/1994-98574-002http://www.springerlink.com/index/10.3758/BF03199951
http://doi.apa.org/psycinfo/1994-98574-002http://www.springerlink.com/index/10.3758/BF03199951


Henrı́quez-Jara, Guevara, Jimenez-Molina 14

Heckman, J. J. (1981). Statistical Models for Discrete Panel Data. In Charles F. Manski and Daniel
L. McFadden (Ed.), Structural analysis of discrete data and econometric applications (pp.
113–178). The MIT Press.

Henningsen, A., & Toomet, O. (2011). maxlik: A package for maximum likelihood estimation in
R. Computational Statistics, 26 (3), 443-458.

Ingvardson, J. B., Raveau, S., & Soza-Parra, J. (2023). Habit and shock effects in public transport:
The case of metro line 6 in santiago using smart card data [unpublished manuscript].

Larcom, S., Rauch, F., & Willems, T. (2017). The benefits of forced experimentation: Striking
evidence from the London underground network. Quarterly Journal of Economics, 132 (4),
2019–2055.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers in
Econometrics Academic Press (Ed.), Zarembka (pp. 105–1042).

Miller, E. J. (2020). Travel demand models , the next generation : boldly going where no-one
has gone before. Elsevier.

Nussenbaum, K., Scheuplein, M., Phaneuf, C. V., Evans, M. D., & Hartley, C. A. (2020). Mov-
ing developmental research online: Comparing in-lab and web-based studies of model-based
reinforcement learning. Collabra: Psychology, 6 (1), 1–18.

Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience
methods, 162 (1), 8–13.

Perez, O. D., & Dickinson, A. (2020). A theory of actions and habits: The interaction of rate
correlation and contiguity systems in free-operant behavior. advance online publication. Psy-
chological Review.

R Core Team. (2022). R: A Language and Environment for Statistical Computing [Computer
software manual]. Vienna, Austria. Retrieved from https://www.r-project.org/

Rasouli, S., & Timmermans, H. (2014). Applications of theories and models of choice and decision-
making under conditions of uncertainty in travel behavior research. Travel Behaviour and
Society, 1 (3), 79–90.

Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effec-
tiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research
and theory, 2, 64–99.

Sutton, R., & Barto, A. (2020). Reinforcement Learning (Second ed.). The MIT Press Cambridge,
Massachusetts.

Vaa, T. (2014). From Gibson and Crooks to Damasio: The role of psychology in the develop-
ment of driver behaviour models. Transportation Research Part F: Traffic Psychology and
Behaviour, 25 (PART B), 112–119.

21º Congreso Chileno de Ingenierı́a de Transporte – Valparaı́so, 23 - 25 Octubre 2023

https://www.r-project.org/


Henrı́quez-Jara, Guevara, Jimenez-Molina 15

Valeri, E., & Cherchi, E. (2016). Does habitual behavior affect the choice of alternative fuel
vehicles? International Journal of Sustainable Transportation, 10 (9), 825-835.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine learning, 8 (3-4), 279–292.

APPENDIX

Table A1: Glossary of main concepts of Reinforcement Learning
Concept Definition
Value Mental representation of an alternative or action. It allows

for the comparison and oredering of alternatives. It can
be understood as a utility, but which is constantly learned
rather than computed as a function of the attributes of the
alternatives.

Reward Outcome of an action. It is commonly discretly codded (1
for positive reward, -1 for negative reward and 0 for a non-
rewarded action).

Stage Components of the structure of a learning process. Each
stage may comprise a set of possible actions or alternatives,
and each of them make take to different stages.

Transition In a markovian decission process, the transitions are the
connection between stages.

Q-learning A particular RL alogithm, developed by Watkins & Dayan
(1992), in which the values are updated according to the
RPE and a learning rate.

Reward prediction error (RPE) Is is the difference between the value associated to an alter-
native and the obtained reward after choosing it.

Learning rate The rate at which the RPE is incorpored in to the learning
process of the value associated to an alternative.

Model-free Cognitive system that represents the learning process of a
subject with habitual or automatic behavior. A subject un-
der habitual behavior, is said to be “controlled by” model-
free system.

Model-based Cognitive system that represents the learning process of a
subject with goal-directed (utility maximizer) behavior. A
subject under goal-directed behavior, is said to be “con-
trolled by” model-based system.
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