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ABSTRACT

We develop the Markovian dynamic transit assignment (MDTrA) modelling framework for large
multi-modal networks to incorporate into the transit assignment analysis the dynamic aspects that
come from the time-dependent relationship between demand and supply and the stochasticity that
comes from differences in passenger’s costs perception, measurement errors, and other sources
of uncertainty. The intuition is that passengers choose their routes by a recursive arc-choice pro-
cess, according to the expected minimum costs from their current node to their destinations. Our
approach presents an important oportunity to use smartcard data, as demand profiles and users’s
choices over time are obtained from it.

1. INTRODUCTION

Transit assignment models play a fundamental role in the planning of public transport systems.
They allow to estimate the flow of passengers for each alternative route to reach a certain destina-
tion from a given origin. Developing a transit assignment model is a complex task since it involves
emulating the passengers’ route decision making process and identifying the attributes of the dif-
ferent routes. This challenge is even bigger in a dense multimodal transit network, which usually
contains hundreds of routes. Currently, the available data from different types of sources (such as
smartcards), the inherent uncertainty in users’ choices, and the natural time-dependence of demand
and supply of transit transport networks, pushes researchers to deal with dynamic and stochastic
dimensions to contribute with approaches able to interpretate our current transport context.

Transit assignment studies are mostly based on deterministic passenger equilibrium (UE) (Nguyen
& Pallottino, 1988; Spiess & Florian, 1989; de Cea & Fernández, 1993; Cominetti & Correa, 2001;
Cepeda et al., 2006), assuming passengers with perfect knowledge about route costs. Therefore, al-
gorithms find the shortest hyperpath Nguyen & Pallottino (1988) and all demand is assigned among
these routes, with passengers taking the first line that arrives at the stop (Spiess & Florian, 1989;
Nguyen & Pallottino, 1988). Literature based on stochastic passenger equilibrium (SUE) (Lam et
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al., 1999; Kiencke & Nielsen, 2000; Nielsen & Frederiksen, 2006; Yang & Lam, 2006) assumes
imperfect information about route costs and, therefore, algorithms use random utility maximization
(RUM) for assigning demand, where passengers choose routes with higher perceived utility.

In assignment literature we find the Markovian approach to address uncertainty in users’ choices.
Its intuition is that users construct their routes by making recursive arc choices, rather than choose a
fixed route. It is introduced by Baillon & Cominetti (2008) with the Markovian traffic equilibrium
(MTE) for the static case in private transport networks. The concept is later applied to generate the
first stochastic transit assigment model with a Markovian approach (STE) in Cortés et al. (2013),
later extended in Pineda et al. (2016) by adding private transportation (STP). Later on, in de la
Paz Guala (2020), the Markovian approach is adapted for private transport networks with time-
dependent demand. In all these contributions the arc-choice model considers as the users’ choice
criterion the expected minimum costs of the remaining trip, generating nested cost operators that
are able to avoid path enumeration and allow working with overlapping routes.

When it comes to the use of real data, model calibration and validation process is fundamental
to set the model’s parameters and to evaluate if it is generating passenger flows according to real
passengers’ behaviour. Although emerging technologies, such as automatic fare collection (AFC)
and automatic vehicle location (AVL) systems, offer an opportunity to deal with these problems,
there are relatively few studies for calibration and validation purposes. In this line, Tavassoli et
al. (2020) proposed a framework to calibrate and validate existing transit assignment models using
smartcard transaction data and AVL data from public transport systems.

Motivated by the contributions in transit assignment models, the referred Markovian approaches,
and the use of smartcard data, the main goal of this paper is to propose a Markovian modelling
framework to address the dynamic aspects from time-dependent demand and supply, and the un-
certainty from users’s choices, where smartcard data is used to estimate fundamental information
for the model. To accomplish this, we present: the Markovian dynamic transit assignment (MD-
TrA) model, an illustrative example of how it works, an example of how to use real smartcard data
to estimate dynamic demand profiles, and a solution method for the proposed model.

2. MARKOVIAN DYNAMIC TRANSIT ASSIGNMENT MODEL

The main result is the Markovian dynamic transit assignment (MDTrA) model, an integration of the
MDTA modelling framework by de la Paz Guala (2020), a dynamic adaptation of the MTE (Baillon
& Cominetti, 2008), both for private transportation, and the approach in Cortés et al. (2013) and
Pineda et al. (2016), both for public transportation. The intuition is that, given exogonous time-
dependent demand and supply profiles, passengers, at each stop/station they are currently at, will
choose the next arc to move forward considering the expected minimum costs from the remaining
trip, following a logit rule and wether the arc is reasonable or not (subsection 2.2).

The MDTrA model has a demand and supply profiles, a cost and time model, and a arc-choice
model. Before developing each part, we first address the digraph that our formulation is based on,
and then we introduce the reasonability concept, a defining feature of our work.
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2.1. Transit network’s underlying digraph

To formulate the MDTrA model, we first generate a digraph from the transport system’s underlying
service network. For that, we consider: the set of all stops/stations (stops from now on, for simplic-
ity)N ; the set of lines of the system, L; the sequence of stops that each line l ∈ L serves,Nl ⊆ N ,
∀l ∈ L; the set of lines that serve each stopt s ∈ N , Ls ⊆ L, ∀s ∈ N .

First, we define what we consider as a node. As shown later in section 5, the application of our
approach features the use of smartcard data and, because of the way that information is obtained,
origins and destinations are understood as stops in the public transport system. Previous to the
modelling, we process the spatial information of the network to reduce the amount of nodes that
will be considered, respecting logical considerations. We do so by merging stops that are closer to
each other within a certain ratio considered to be narrow enough to make the merging rational, in
the sense that to enter/exit through any of the stops containted within that ratio is no significantly
different to enter/exit through a different stop within the same area. Now, following that intuiton
and consering the demand that is associated to each stop, the process is briefly described as follows:

1. For all stops, visited one by one, check if within a given ratio there are more stops;

2. If there are, merge them to generate an aggregated node that, at the end, will represent all
stops within that area that are served by different services;

3. The agreggated node is now served by the union of services associated to each merged stop;

4. The aggregated demand of all merged stops is the demand of the new aggregated stop.

In Appendix A.1 we present a pseudocode for this routine, where the scenario in which a stop that
hasn’t been merged yet lies within the ratio of multiple other stops is properly addressed.

Let us denote the set of merged stops as NM , the set of merged lines as LM , the set of merged
lines i ∈ NM as LM

i , and the demand functions of each pair of merged stops (o, d) as DM
o,d(·).

Considering this, we construct a digraph G = (N,A) by applying the following criteria:

• Set of nodes: N is the union of:

– the set No, denoted as stop nodes: For each merged stop i ∈ NM a node i ∈ NO

represents it (for simplicity, we keep the same notation;

– the set Nr, denoted as replicated service nodes: For each node i ∈ No representing a
stop i ∈ NM and for each line l ∈ LM

i , a node il is added, representing that line l serves
from/to i;

• Set of arcs: A is the union of:

– the set of boarding arcs Ab, that contains, for each i ∈ No and for each replicated
service nodes il, the arc (i, il) that represents boarding line l at i;
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– the set of alighting arcs Aa, that contains, for each node i ∈ No and for each one of its
il, the arc (il, i) that represents alighting from line l at i;

– the set of in-vehicle arcs Av, that contains, for each line l ∈ LM , the arc (ik, ik+1),
where ik and ik+1 are nodes associated with consetutive merged stops in the sequence
of stops served by line l, that represents moving from ik to ik+1 using line l;

– the set of walking arcs, Aw, that contains the arc (i, j) if merged stop j is considered to
be walkable from merged stop i.

As an example, consider a network that, after merging, has: stops 1, 2, 3 and 4; lines l1, l2 and l3;
serving sequences of nodes {1, 3, 4}, {1, 2, 3} and {1, 2, 4}, respectively; and stop 4 is walkable
from stop 3. Then, this transport system has as underlying digraph the one shown in Figure 1.
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Figure 1: Transport network’s underlying digraph G

We emphasize that the base of the formulation is the digraph G = (N,A), thus, several previously
used notations (defintions with cursive notations, for example), will not be present in the model.
The term stop can be used to refer to its corresponding node in the underlying digraph.

2.2. Reasonable arcs towards destinations

When passengers have to choose between options, by default, each one has a positive probability
of being chosen. In reality, this does not generally hold, as some options may not be eligible for
passengers, depending on their criteria. Addressing this, Dial (1971) defined, for static stochastic
traffic assignment in private transport networks, that given an O-D pair (o, d), a route from node i
to node j is a reasonable route for (o, d) if the minimum cost of going from o to i is less than the
minimum cost of going from o to j and, simultaneously, the minimum cost of going from j to d is
less than the minimum cost of going from i to d. In de la Paz Guala (2020) this concept is adapted,
defining it over arcs (instead of routes) and according to destinations (instead of O-D pairs), stating
that, given a destination node d, an arc (i, j) is a reasonable arc towards d if the minimum cost of
going from node j to d is less or equal to the minimum cost of going from node i to d. On other line
of work, Nuzzolo & Comi (2017) introduce the master hyperpaths, where, among all the strategies,
the master hyperpath is formed by those that are actually considered by passengers.
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In this paper, we introduce a reasonability concept, as in de la Paz Guala (2020), to reduce the route
options to those that are actually considered by passengers. Given a destination node d, a line ser-
vice l, and two consecutive stops i and j (served by l), we say that (il, jl) is a reasonable arc towards
d if the minimum cost of going from j to d is less or equal to the minimum cost of going from i to
d. Also, the boarding and alighting arcs associated to a reasonable arc, (i, il), (il, i), (j, jl), (jl, j),
are also reasonable (and vice versa). The set of arcs reasonable towards d is denoted as Rd.

2.3. Building the MDTrA model

Now, we define the parts of the model considering an analyzed period of time [0, T ].

2.3.1 Demand and supply profiles

Consider a set of O-D pairs OD. The demand profile is represented by the exgoneous time-
dependent functions D(o,d)(·) : R+

0 → R+
0 , for all (o, d) ∈ OD. Given t ≥ 0, D(o,d)(t) represents

the demand that, at time t, is generated at o and goes to d.

The supply profile is the exgoneous time-dependent mean frecquency of lines that serve the transit
network. Given a replicated service node il ∈ Nr and its underlying line l, the function ϕil(·) :
R+

0 → R+
0 represents the mean frequency of l at i. Note that this function will be equal for all

nodes served by the same line, this is, for all i served by l ϕil(·) = ϕl(·).

2.3.2 Time and cost models

Time functions are fundamental, as they locate passengers in time, and are a component of the
cost functions used to compute the expected minimum costs. It is worth remarking that, given our
arc-based approach, times and costs are defined for each arc and, thus, we do not require them to
be defined for routes. This allows us to work with overlapping routes, not needing the condition of
route’s times and costs independence, as it is widely needed in assignment literature.

For each arc a ∈ A, depending on its type, we define the time function Ta(t) and, according to each
destination node d ∈ D, a cost function Cad(t), t ∈ [0, T ]. Both functions are heavily related as, at
each arc, part of its cost is defined by its underlying times. Then, for t ∈ [0, T ], we have:

• For boarding arcs a = (i, il) ∈ Ab, Ta(t) is given by the addition of:

– the time a passenger takes to access stop i and reach a representative physical point
where line l arrives, ba;

– the average time that the passengers waits for line l, given by 1
ϕl(ba+t)

.

Now, independently of the destination d ∈ D, Cad(t) is the direct transformation of times
into costs (using the factors α and β, respectively).
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• For alighting arcs a = (is, i) ∈ Aa, Ta(t) is given by the time that takes to alight line l and
exit stop i, qa. Now, given a destination node d, Cad(t) has two cases:

1) if the alighting happens at destination node d, then the cost is given by the direct trans-
formation of time into cost by using factor δ;

2) otherwise, if the alighting happens at node different than d, then a penalty pa is added
to the transformation of time into cost.

• For in-vehicle arcs a = (is, js) ∈ Av, Ta(t) is given by the time that takes to travel from i to
j using line l, ta. Now, given a destination node d ∈ D, Cad(t) has two components:

– the direct transformation of ta into cost (using the factor γ);

– a cost associated to overcrowding, that depends proportionally (factor Ha) on the total
inflow assigned to arc a at instant t,

∑
d′∈D Ed′

a (t) (addressed in subsecion 2.3.3).

• For walking arcs a = (i, j) ∈ Aw, Ta(t) is the time wa and, regardless the destination d ∈ D,
Cad(t) is the time directly transformed into cost (using the factor ρ).

Then, for each arc a = (i, j) ∈ A and at a time t ∈ [0, T ], the time that takes to travel through arc
a having entered it at time t is given by:

Ta(t) =


ba +

1
ϕl(ba+t)

, if a = (i, il) ∈ Ab,

qa, if a = (i1, i) ∈ Aa,

ta, if a = (il, jl) ∈ Av,

wa, if a = (i, j) ∈ Aw,

(1)

while, for each d ∈ D, the cost of travelling through arc a while heading to destination node d,
having entered the arc at t, is given by:

Cad(t) =



αba +
β

ϕl(ba+t)
, if a = (i, il) ∈ Ab,

δqa, if a = (il, i) ∈ Aa and j = d,

δqa + pa, if a = (il, i) ∈ Aa and j ̸= d,

γta +Ha

∑
d′∈D

Ed′

a (t), if a = (il, jl) ∈ Av,

ρwa, if a = (i, j) ∈ Aw.

(2)

2.3.3 The choice model

The arc-choice model, according to the expected minimum costs to each destination, assigns inflow
from each node among its outgoing reasonable arcs. It has delicate considerations as, for example,
not all arcs are necessary reasonable and, at a given time, if inflow rate has been assigned to an arc
(i, j) it can not be immediatly assigned back through its eventual inverse arc (j, i) .
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Given a destination d, an arc a = (i, j), and a time t, the exptected minimum cost of using a to
go to d, having entered at t, denoted as Zad(t), is given by the cost of a going to d at t, Cad(t),
plus the expected minimum cost from j to d (arriving at j at t + Ta(t)). The latter considers all
the outgoing reasonable arcs to d from node j (except for (j, i)). Thus, the construction of the
expected minimum costs is recursive and, even though route enumeration is not needed, its second
term keeps the information of the exptected minimum cost of what is left of the trip to d.

We first efine some sets. Consider a node i ∈ N , a destination node d ∈ D, and the set of reasonable
arcs towards d, Rd. Let us denote two subsets of arcs in Rd, the outgoing arcs from i and the
incoming arcs to i, Rd+

i =
{
(i, j) ∈ A+

i : (i, j) ∈ Rd
}

and Rd−
i =

{
(j, i) ∈ A−

i : (j, i) ∈ Rd
}

,
respectively. Now, we denote the subsets Rd+

i and Rd−
i whose inverse is also reasonable towards d

as Bd+
i =

{
(i, j) ∈ Rd+

i : (j, i) ∈ Rd−
i

}
and Bd−

i =
{
(j, i) ∈ Rd−

i : (i, j) ∈ Rd+
i

}
, respectively.

Then, being θ the dispersion parameter, for each destination d ∈ D, for each arc a = (i, j) ∈ A,
and at each time t ∈ [0, T ], the expected minimum cost of using a going to d, entering at t, is:

Zad(t) =


Cad(t), if j = d,

Cad(t)− 1
θ
ln

 ∑
b∈Rd

j \{(j,i)}

exp (−θZbd (t+ Cad (t)))

 , otherwise.
(3)

Now, given a destination d, a node i and an instant t, the outflow rate of all incoming arcs b arriving
to i, denoted as Gbd(t) (equation 5), and the demand at i at time t, both with destination d, are
aggregated and then assigned as inflow among the outgoing reasonable arcs from i.

Given a destination node d ∈ D, for each node i ∈ N − d, and at each instant t ∈ [0, T ], then, we
have that, for all a = (i, j) ∈ A+

i :

Ead(t) =



e−θZad(t)∑
b∈Rd+

i

e−θZbd(t)

 ∑
b∈A−

i \Bd−
i

Gbd(t) +D(i,d)(t)

+
∑

(i,m)∈Bd+
i

 e−θZad(t)∑
b∈Rd+

i \{(i,m)}

e−θZbd(t)
G(m,i),d(t)

 ,

e−θZad(t)∑
b∈Rd+

i

e−θZbd(t)

 ∑
b∈A−

i \Bd−
i

Gbd(t) +D(i,d)(t)

+
∑

(i,m)∈Bd+
i \{a}

 e−θZad(t)∑
b∈Rd+

i \{(i,m)}

e−θZbd(t)
G(m,i),d(t)

 ,

0.
(4)

if a ∈ Rd+
i \B+

i , or if a ∈ B+
i , or otherwise, respectively.

Now, when inflow rate enters an arc a = (i, j) through i, it reaches j and exits as outflow rate after
the travel time of the arc, Ta(t). Thus, given a destination d ∈ D, for each arc a ∈ A and at each
instant t ∈ [0, T ], the inflow and the outflow rates of arc a going to d are related as follows:

Gad(t+ Ta(t)) = Ead(t). (5)
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3. ILLUSTRATIVE EXAMPLE

Consider digraph G from Figure 1, where metro line 1 serves node 1, 3 and 4; metro line 2 serves
nodes 1, 2 and 3; and bus line 3 serves nodes 1, 2 and 4. Also, node 4 is walkable from node
3. A demand rate of passengers with origin at node 1 going to node 4 is shown in Figure 2. The
suppply is defined by the constant mean frequencies of lines 1, 2 and 3, given by ϕ1(t) = 1 metro

min
,

ϕ2(t) =0.5 metro
min

, and ϕ3(t) =0.2 bus
min

, respectively.

Figure 2: Demand rate from node 1 to node 4

In this example, costs of arcs are directly defined by times, according to equations 1 and 2. Thus,
cost and time differ only when a is an alighting arc that does not arrive to node 4. Table 1 shows:
access times; exit times; transfer penalties for not alighting at node 4; and mean waiting times of
lines. Table 2 shows costs associated to in-vehicle and walking arcs.

access exit transfer penalty waiting
node 1 - line 1 3 3 5 1
node 1 - line 2 3 3 5 2
node 1 - line 3 1 1 10 5
node 2 - line 2 2 2 5 2
node 2 - line 3 1 1 10 5
node 3 - line 1 2 2 5 1
node 3 - line 2 2 2 5 2
node 4 - line 1 2 2 0 1
node 4 - line 3 1 1 0 5

Table 1: Costs [min] of node-line interactions

travel time
node 1 to 2 - line 2 18
node 1 to 2 - line 3 30
node 1 to 3 - line 1 20
node 2 to 3 - line 2 10
node 2 to 4 - line 3 25
node 3 to 4 - line 1 25
node 3 to 4 - walking 35

Table 2: Travel times [min] between nodes

Then, the time and cost [min] of using each arc (going to destination 4) are shown in Figure 3:
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Figure 3: Travel times and costs [min] of each arc

Then, the expecetd minimum costs to destination 4 are those presented in Table 3.

(i, j) Z(i,j),4(t) (i, j) Z(i,j),4(t) (i, j) Z(i,j),4(t)
(1, 1l1) 43.26 (2, 2l2) 39.84 (3, 4) 35
(1, 1l2) 46.30 (2, 2l3) 32 (3, 3l1) 30
(1, 1l3) 56.84 (2l2 , 2) 39 (3l1 , 3) 42
(1l1, 3l1) 39.26 (2l2 , 3l2) 35.48 (3l1 , 4l1) 27
(1l2 , 2l2) 41.30 (2l3 , 2) 50.48 (3l2 , 3) 25.48
(1l3 , 2l3) 50.84 (2l3 , 4l3) 26 (4l1 , 4) 2

(4l3 , 4) 1

Table 3: Expected minimum costs [min], from arcs and from nodes, to node 4.

Figure 4 depicts how the flow of passengers is assigned, at each node, among the different options to
go to node 4, highlighting the dynamic nature of the problem. As flow rate originates dynamically
at node 1, it travels through the arcs arriving at different times to other nodes. The evolution of the
inflow rates from the nodess transforms the curve of the demand rate generated at node 1 (Figure 2)
into the curve of flow rate arriving to node 4 (Figure 5).

4. MDTRA ALGORITHM FOR TRANSIT NETWORKS

We propose the Markovian dynamic transit assignment (MDTrA) algorithm, a dynamic program-
ming method that solves a discrete version of the problem. It adapts the MDTA algorithm (de la
Paz Guala, 2020), based in a repeated and reversed-step version of Dial’s algorithm (Dial, 1971).

The MDTrA algorithm has as inputs: (1) the digraph (N,A); (2) the set of destinations, D ⊆
N ; (3) the demand-supply profile (D (·) , ϕ (·)); (4) an array P of access times, exit times and
transfer penalties; (5) an array of the travel times between consecutive nodes for all lines, V ; (6)
the length of the time period, T ; (7) the timestep size of the discretization, ∆t; and (8) the dispersion
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Figure 4: Evolution of inflow rates [pas/min] from each node

Figure 5: Evolution of flow rates [pas/min] arriving to station 4

parameter for the logit model, θ. Then, being K = T/∆t the number of time increments resulting
from the discretization, the outputs of the algorithm are the arrays E =

(
Ek

ad

)
a∈A,d∈D,k=1,...,K

and
C =

(
Ck

ad

)
a∈A,d∈D,k=1,...,K

, where, for an arc a ∈ A, a destination d ∈ D and a time increment
k ∈ {1, ..., K}, Ek

ad is the inflow rate going to destination d entering arc a at time k and Ck
ad is the

cost of using arc c to go to destination d entering at k. The MDTrA algorithm works as follows:

• Initialization: Sets of reasonable arcs considering non-overcrowded networks, discrete ver-
sions of demand and supply profiles along with other initial values are set.

• Iterative process: For each time increment k (increasingly), we apply the following steps:

– Exptected minimum costs (Backwards): Considering the costs, it computes the ex-
pected minmum costs, from each destination node and backwards;

– Assignment (Forwards): Considering the expected minimum costs, given a destina-
tion d, the flow at each i going to d is split among its outgoing reasonable arcs (to d).
After traversing each arc, the inflow is considered as outflow;

– Costs update: For each arc, considering its inflow and time, its costs is updated;

– Stop criteria checking: If the last time increment, K, is the current one, or if there are
no more flows to assing in the whole network, then the algorithm ends.

A technically detailed pseudocode for the MDTrA algorithm is presented in Appendix A.3.
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5. SMARTCARD DATA USE

The analysis for this study uses Santiago’s (Chile) multimodal public transport network, operated
by headway scheduling. Data from the fare system is fully integrated, with flat fares between urban
buses, metro, and some rail services. In a typical week, 3 million passengers use the system, making
25.5 million trips. The network includes 7 metro lines, more than 300 bidirectional transit lines, and
one rail service. The available data includes detailed demand and supply information from three
sources: the Automatic Fare Collection (AFC) database, the Automatic Vehicle Location (AVL)
database, and the General Transit Feed Specification (GTFS) database.

The AFC system is implemented through a smartcard, the only payment method, that passengers
must validate when boarding a bus or entering a metro station. Even though no alighting validation
is needed, the data is processed to estimate boarding and alighting positions using Munizaga &
Palma’s (2012) methodology. AFC, combined with AVL data, allows identifying the chosen paths
between each O-D pair, and to estimate information about trips, such as in-vehicle travel time,
out-of-vehicle time (waiting, transfer, and walking times), and number of transfers. Additionally,
AVL data from buses (with GPS reporting every 30 [sec]) allows obtaining observed frequencies
of transit lines to estimate time intervals bewteen buses and waiting times. GTFS data provides
geographic information of stops, and structure and scheduled frequency of all lines.

We remark that Santiago’s public transport authorities have successfully implemented the static
approach for public transit assignment modeling, but it does not take into account the within-day
variable demand. To show this dynamic behavior, we collected smartcard data to obtain the number
of transactions per minute made at a metro station in a workday, presented in Figure 6. Note that the
plot is highly variable along the day, even within periods such as morning peak, afternoon peak, and
off peak. This variation, in addition to the variability of observed frequencies, produces passenger
congestion at specific times. Our proposed MDTrA model allows to address, simultaneously, this
type of dynamic dimension and the uncertainty in passengers choices.

Figure 6: Number of trips generated per minute in a workday (08 May, 2019)
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6. RESULTS ON SUBNETWORKS OF SANTIAGO’S PUBLIC TRANSPORT SYSTEM

In this section we present two results worth highlighting, given the overiew that they provide on
our approach while still being practical for illustration.

6.1. Reduction of options due to reasonable arcs consideration

Consider Santiago’s public transport network and, particularly, stop PG1583 as the destination. Its
associated subnetwork has 38 services and 1035 stops (including PG1583). Then, the underlying
digraph is subsequently compossed by 1035 nodes and 1648 arcs.

Figure 7: Bus stop PG1583

Given the application of the reasonability concepto, the number of arcs that are actually considered
to be assigned with positive flow is reduced to 1084 arcs. This means that more than 34 % of the
original arcs won’t be chosen, as they are not considered to convinent.

6.2. Overview on the outputs of the MDTrA algorithm

Consider the subnetwork of Santiago, Chile, shown in Figure 8. Here, stop PA215 is the single
destination and the rest of the nodes and arcs are defined by the lines that serve at PA215, plus a
connection to metro station La Moneda (due to their closeness), and their respective stops. The
network consists then in 1072 stops and 1055 aggregate trips between stops for all serivices. We
use as demand the estimation shown in Figure 6.

To determine times we consider the information provided by ADATRAP to obtain travel times
between consecutive stops (i, j), (V(i,j)) and average frequences of a line l at each stop ϕl(t) (con-
stant). Access time (ba) and exit time (la) are set as 0.5 min for all bus stops and 2 min for all
metro stations. Walking times for walkable arcs (wa) are obtained from Google Maps. With this,
the underlying digraph of reasonable arcs, is presented in Figure 9.
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Figure 8: Subnetwork of Santiago’s public transport system
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Figure 9: Subnetwork’s underlying digraph of reasonable arcs

Costs are represented as in vehicle time (IVT). The factors to compute costs in Equation (2) (over-
crowding is considered 0 zero), come from Tiznado-Aitken et al. (2021), where they elaborated
parameters to express different aspects of cost in terms of IVT, as shown in Table 4.

Our computational implementation delivers as results the plots presented in Figures 10, 11 and 12,
corresponding to assignments: from Parque O’Higgins metro station to bus linnes B505 and B506
and metro line L2; from metro station Los hores to metro Lines 1 and 2; from Irrarázabal metro
station to metro line 5 and to walking option.
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Attribute Units IVT equivalency Value
Walking time min α,δ,ρ 2
Waiting time min β
Transfers Direct quantity pa 10.2

Table 4: Multipliers to IVT, Tiznado-Aitken et al. (2021)

Figure 10: Inflow [pas/min] to B506 (green), L2 (red) and B505 (purple) from Parque O’higgins

Figure 11: Inflow [pas/min] to L1 (red) and L2 (blue) from Los Héroes

Figure 12: Inflow [pas/min] to L5 (blue) and walking (purple) from Irarrázabal

7. FINAL COMMENTS AND CONCLUSIONS

In this paper, we present a new approach to address the problem of dynamic transit assignment with
uncertainty in passenger’s choices. We do so by presenting the Markovian dynamic transit assign-
ment (MDTrA) model, showing an example of how the MDTrA model works, giving an insight
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in how to use smartcard data to obtain the required exogenous demand profile, and proposing the
MDTrA algorithm, a solution method for a discrete version of the original problem.

The MDTrA model, intuitivelly, seeks to represent that, according to the transit network’s under-
lying digraph and given demand and supply profiles, at each node (station/stop) passengers travel
to their destinations by choosing the next reasonable arc (line/walk) to move forward to, given
their perceived costs of using said arc to go to their destinations. The demand is given by a time-
dependent function that defines the flow rate of passengers from origins to destinations, while the
supply is given by the time-dependent frequencies of the transit network services. The arc travel
time functions are fundamental, as they allow us to represent the dynamic aspect of the problem,
locating in time the different variables of the model, while the arc cost functions represent the
different factors that influence the passengers travelling experience. The arc-choice model, af-
ter computing the expected minimum costs of arcs, performs the assignment according to a logit
model of known dispersion parameter, and, even though paths are not directly chosen, the routes
that passenger follow end up being constructed by a recursive arc-choice process.

We also present how smartcard data can be used to generate a demand profile that evolves over
time. Transactions when boarding at each station/stop can be collected, recording the time and
estimating the destination, following Munizaga & Palma’s (2012) methodology.

The proposed MDTrA algorithm allows obtaining a solution for a version of the model considering
a discretization of the time period to be analysed. In brief, after an initialization, it runs over each
time increment that results from the discretization a backward step to compute expected minimum
costs and then a forward step to perform the assignment.

Some of the defining features of our contribution are that: it reduces the set of options through the
reasonability concept; in addition to usual modes (metro and buses), it aknowledges that passengers
may choose to walk between stations, adding a mode option not usually considered in the literature;
given its arc-based construction, routes costs independence and route enumeration are not needed
to formulate the model or to construct the algorithm; and smartcard data, among other type of data,
allows constructing the exogenous information that the model and the algorithm requires.

In summary, we propose a model and its corresponding solution method to adress from Markovian
point of view the dynamics of the decisions of user given temporal dependant context. Our approach
can be considered as an alternative to route base models, as it disaggregate the analysis to an arc-
level focused one, being able to aim the objectives of studies to more local instances, as it allows
to consider the effects of different criteria over decompossed parts of the network. Our approach,
given our algorithm and its impementation, also allows us to study how a network with an exising
assignment configuration can be induced to one corresponding to a Markovian point of view.

For later stages of this research, among other ideas, we intend to: apply the effective frequency
theory in the dynamic context (as in Cortés et al. (2013); Pineda et al. (2016)); integrate with the
recursive approach in Cortés et al. (2023); study diferent instances, fictional and real, to test the
implementation of the algorithm; address congestion of passengers in station/stops; represent the
effect of consecutive transbords.
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A. PSEUDOCODES FOR ALGORITHMS

A.1. Merging of stops

Algorithm 1 (CN,CA) = NetworkCollapser((N,A) , r)
1: CN ← ∅
2: CA← ∅
3: N0 ← N
4: for i = 1, ..., length(N0) do
5: for all j ∈ B(i, r) do
6: CN ← CN

⋃
{ic}

7: CA← CA
⋃
{(ic, k) : (j, k) ∈ A}

8: N0 ← N0 − {j}
9: end for

10: N0 ← N0 − {i}
11: end for

A.2. Transit network underlying digraph construction

Algorithm 2 (N,A) = NetworkBuilder(DB)
1: N ← ∅
2: A← ∅
3: for i=1,...,length(DB) do
4: serv.i← struct2cell(DB(i))
5: N ← N

⋃
serv.i{par}

6: Ai ← ∅
7: for j=1,...,length(serv.i{ par })-1 do
8: A← A

⋃
{(serv.i{par}(j), serv.i{par}(j + 1)}

9: end for
10: end for
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A.3. MDTrA algorithm

Algorithm 3 (E,C) = MDTrA((N,A) , D, (D (·) , ϕ (·)) , P, V, T,∆t, θ)
1: STEP 0: INITIALIZATION Technical settings
2: for k=1,...,K do
3: STEP 1: BACKWARD
4: for all d ∈ D do
5: for all i ∈ N , in the order given πd do
6: for all a = (i, j) ∈ A−

i incoming arcs to i, do
7: Compute expected minimum costs of using a to go to d
8: end for
9: Compute expected minimum costs from i to d

10: end for
11: end for
12: STEP2: FORWARD
13: for all i ∈ N do
14: for all d ∈ D do
15: for all a = (i, j) ∈ A+

i outgoing arcs from i, do
16: Assign the aggregation of outflow rates of incoming arcs to i, except by (j, i), and the flow rate

generated at i as inflow rate
17: end for
18: end for
19: end for
20: STEP 3: COST UPDATES
21: for all a ∈ A do
22: Update the cost of a
23: end for
24: STEP 4: STOP CONDITION
25: if k = K or there are no more flow rates to assign then
26: End MDTrA algorithm
27: end if
28: end for
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