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ABSTRACT 

 

Traditional traffic forecasting previously relied solely on characteristics related to the services and 

the users. Recent research has highlighted the importance of also considering psychological factors 

of the travellers when explaining travel behaviour. While previous studies have incorporated the 

role of habits in travel choice behaviour, only a few have analysed the role of habit and shock in 

relation to major changes to the transport network. This study contributes to previous literature by 

revealing the changes in behaviour of public transport passengers over time after the inauguration 

of a new metro line in Santiago, Chile, using large-scale RP data from Automated Fare Collection 

systems. Through estimating a heteroskedastic mixed latent class public transport mode choice 

model, the study explicitly analyses the consequences of the new metro on passenger behaviour 

considering different passenger types. The model incorporates both inertia effects resulting from 

habitual behaviour and shock effects resulting from the large change to the public transport 

network. The results confirm significant habitual behaviour among passengers where metro users 

tend to stick to using metro whereas bus users tend to switch to other modes. However, after the 

introduction of the new metro line a significant shock effect is observed where users have an 

increased tendency to switch mode, and this effect increases slightly on the longer term. The results 

highlight the importance of incorporating habitual effects in behavioural studies. 
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1. INTRODUCCIÓN 

 

Public transport systems are important in ensuring sustainable mobility in dense urban areas. 

Increasing levels of urbanisation puts pressure on urban transport networks, which therefore 

requires extensive investments to ensure sufficient capacity and level-of-service. To ensure 

sufficient mobility an attractive public transport system is necessary. By offering much higher 

capacity public transport not only ensures mobility for a range of users, but also relieves road 

congestion representing significant socio-economic value for urban areas (Aftabuzzaman et al., 

2010). However, implementing public transport systems is expensive, and thus it is important to 

plan coherently to consider the potential impacts of new infrastructure. 

 

Traditionally, traffic forecasting models incorporated solely characteristics related to the improved 

services. Nevertheless, much research has highlighted the importance of also considering 

psychological factors of the travellers such as habits, e.g. Gärling and Axhausen (2003), Schlich 

and Axhausen (2003). Recently, the role of habits has also been incorporated in several mode 

choice studies through inclusion of inertia with studies suggesting that serious errors occur if not 

accounting for inertia (Cantillo et al., 2007) since inertia increases when using the same travel 

mode over time (Cherchi and Cirillo, 2014), which influences mode shifting behaviour, e.g. from 

car to public transport (Fan et al., 2018). 

 

While previous literature has highlighted the importance of considering inertia in transport mode 

choice models only few studies have analysed inertia and shock effects when implementing new 

public transport infrastructure. Due to the expensive nature of collecting large-scale Revealed-

Preference (RP) data, studies have relied on either Stated-Preference (SP) surveys, despite the 

potential bias resulting from using SP data (Ben-Akiva and Morikawa, 1990; Cherchi and Manca, 

2011; González et al., 2017), or restricted samples of RP data in terms of size and composition. 

Johnson and Hensher (1982) was based on a sample of 163 commuters in the northern suburbs of 

Sydney, Australia, that either chose car or train for their commute; Ben-Akiva and Morikawa 

(1990) was based on two surveys of 107 and 428 commuter rail users in Yokohama, Japan; Yáñez 

et al. (2009) collected RP data from 303 workers at specific universities and hospitals; and 

González et al. (2017) used data from 350 students. Hence, there is a gap in research in 

investigating the role of inertia when implementing new public transport infrastructure using large-

scale RP data. With the advancement of Automated Fare Collection (AFC) systems, large-scale RP 

data is readily available in many cities around the world, but to the knowledge of the authors has 

yet to be used for this type of analysis. 

 

Thus, this study contributes to existing literature by revealing the change in behaviour of public 

transport passengers over time after the inauguration of a new metro line in Santiago, Chile. The 

study is based on large-scale RP data from AFC systems covering one full week before, during and 

after the opening of the new line. This ensures a large sample, which is not restricted to specific 

user types or geographical areas. The data allows for estimating mode choice models revealing the 

mode shifts of users in the public transport system. This will include specific focus on the role of 

inertia as well as the shock effects after the inauguration of the new metro line. In addition, we will 

analyse how the new metro has changed usage patterns through clustering analysis of users, thus 

enabling identification of various user types based on travel frequency and timing to reveal how 

inertia and shock effects vary across user types. This will provide further insights into how 

passengers adapt to new public transport infrastructure. 



 

The rest of the paper is organised as follows. Section 2 reviews relevant literature on public 

transport mode choice in the context of habit and shock effects, implementation of new public 

transport systems, and relevant case-specific literature. In Section 3 the methodology based on 

clustering analysis and latent class mode choice modelling is described whereas Section 4 

introduces the case study and the data used. Section 5 presents the results and analysis. Section 6 

concludes the paper. 

 

 

2. LITERATURE REVIEW 

 

This section presents the state-of-the-art literature on mode choice modelling in transport that 

incorporates inertia and shock effects as well as relevant literature for the case study context of this 

study. 

 

2.1. Inertia and shock effects in transport mode choice modelling 

 

Travel behaviour has long been known to be highly influenced by psychological factors such as 

habits, in addition to traditional level of service characteristics (Gärling and Axhausen, 2003; 

Schlich and Axhausen, 2003). Incorporating habits in mode choice models has therefore been focus 

of many previous studies. In one of the first studies, Johnson and Hensher (1982) analysed a two-

wave RP data set and found that car drivers were more likely to continue choosing the car in the 

second wave irrespective of changes to the remaining variables included in the utility function, 

hence suggesting effects of habit. Later, Ben-Akiva and Morikawa (1990) analysed mode shifting 

behaviour after opening of a metro line in Yokohama, Japan, while assuming explicitly that a mode 

shift to the new metro happens only if its utility is greater than the utility of the current choice by 

more than some threshold value, thus assuming a transaction cost, or inertia effect, representing a 

habitual effect. 

 

More recent literature has also found significant effects of habits in terms of inertia effects in mode 

choice studies. Cantillo et al. (2007) incorporated habits through inclusion of inertia using both a 

synthetic and a combination of real-life SP/RP data, and their results suggested serious errors in 

model estimations if not accounting for inertia. Similarly, Cherchi and Manca (2011) tested 

different measures of inertia in mixed logit models using SP/RP data concluding that inertia is 

important in explaining mode choice behaviour among car, bus and train users in Cagliari, Italy. 

Similarly, Fan et al. (2018) found significant inertia effects in mode choice experiments from car 

to public transport. Cherchi and Cirillo (2014) analysed travel diary data over six weeks finding 

that inertia increases over time when using the same mode of transport. Finally, Wang et al. (2021) 

analysed the re-opening of the public transport network in New York City, USA, after COVID-19 

using Matsim simulation models, which explicitly incorporated the role of inertia, also finding 

significant inertia effects at the aggregate level as people shifted mode during the pandemic and 

did not return to public transport even at a full re-opening of the public transport system. Hence, 

there is strong evidence of the importance of incorporating inertia when considering mode choice.  

 

A few studies have analysed specifically the role of inertia when implementing new public 

transport infrastructure. Yáñez et al. (2009) analysed the impact of a radical change to public 

transport using RP panel data collected through four waves before and after the implementation of 

the Transantiago public transport network in Chile. Through estimating mode choice models, they 



 

found significant inertia effects, and shock effects, resulting from the changed public transport 

system while controlling for traditional modal attributes. Termida et al. (2016) performed 

quantitative data analysis based on survey data collected in relation to the implementation of a new 

tram line in Stockholm finding that reinforcement learning based on past experiences happened on 

the short term, but not on medium- and long-run. González et al. (2017) analysed the role of inertia 

related to the introduction of a new tram line in Tenerife, Spain. They found significant effect of 

inertia among car users, and thus a better model fit when this was correctly included in the model.  

 

Generally, studies found larger inertia effects for the choice of car in the mode choice context. 

Similar to the users in Tenerife where only inertia for the car alternative was significant (González 

et al., 2017), the largest inertia effect was also observed among car users in the multi-modal 

network in Shanghai (Gao and Sun, 2018) with inertia for metro being lower and for buses the 

lowest. This is in line with results from the Netherlands travel survey panel where inertia was larger 

for car compared to public transport (La Paix et al., 2022). 

 

Some studies have focused on how inertia and habit is related to respondents' characteristics. 

Şimşekoğlu et al. (2017) found stronger car use habits among males, and weaker among travellers 

belonging to low-income groups and those emphasising pro-environmental attitudes and personal 

norms. Thorhauge et al. (2020) analysed habits in departure time choice finding higher inertia 

among males, having children, and working fixed hours. Several studies also found significant 

interaction effects between habit and level-of-service characteristics. La Paix et al. (2022) found 

significant inertia related to travel costs for car and public transport, thus suggesting that existing 

users are relatively less cost-sensitive. Similarly, Gao et al. (2022) found that car travel time and 

costs were perceived relatively lower among car users than among public transport users, and 

public transport users perceived crowding as less of a nuisance than car users. In addition, they 

found large variation in inertia effects across individuals. Hence, these studies have highlighted the 

importance of considering user heterogeneity in habitual effects within mode choice. 

 

Several studies have focused on using SP data only or in combination with RP data. While SP data 

are less expensive to collect and thus larger sample sizes are easier to achieve, multiple studies 

highlighted severe bias using such data. González et al. (2017) only found significant inertia effect 

when using RP data whereas no effects were observed when using SP data. Ben-Akiva and 

Morikawa (1990) found bias in reported mode choice, thus highlighting importance of using RP 

data. Cherchi and Manca (2011) found that inertia is not stable during SP experiments due to the 

misperception of past actions, thus also suggesting the importance of using RP panel data. This is 

in line with Ortúzar et al. (2011), which discusses the importance of panel data travel surveys for 

better travel mode choice analysis.  

 

While the effects of inertia on travel behaviour have been the focus of much research as highlighted 

above there no studies have analysed mode shifting behaviour before and after the introduction of 

a new public transport system using large-scale RP data. 

 

2.2. Public transport mode choice modelling 

 

Previous studies have analysed passenger preferences among various public transport modes, e.g. 

whether passengers perceive rail-based modes as more attractive compared to buses. The so-called 

rail factor has been observed in several studies, denoting that passengers prefer trains over buses, 



 

all else equal, e.g. Axhausen et al. (2001); Fosgerau et al. (2007); Nielsen (2000). However, some 

studies found that the preference for trains over buses is due to observable characteristics such as 

improved comfort and better reliability (Ben-Akiva and Morikawa, 2002; Tørset, 2005). Anderson, 

et al. (2017) reviewed several route choice studies comparing rates of substitution of travel time 

components for public transport passengers and found that rail services (metro, suburban rail, and 

regional rail) are consistently preferred over buses. Similar findings were observed in a recent study 

where all rail services are preferred compared to buses (Nielsen et al., 2021). 

 

In the case of Santiago, Yáñez et al. (2010) studied mode choices after a radical change to the 

public transport system, showing the importance of including latent variables such as accessibility, 

reliability, comfort and safety to properly capture travellers' preferences and perceptions in their 

decision-making process. Soza-Parra et al. (2021) also used latent variables related to crowding 

aversion and punctuality to model the travel preferences of public transport users in presence of 

unreliable services. Raveau et al. (2011) studied the preferences between bus and metro of public 

transport travellers. Traditional variables such as travel time, wait time and number of transfers 

were included in their model, as well as topological and infrastructure information. Tirachini et al. 

(2017) and Batarce et al. (2015) studied the impact of crowing in the perception of public transport 

travel time and therefore in the travel decisions of public transport travellers. 

 

 

3. METHODOLOGY 

 

The study is based on discrete choice modelling to estimate mode choice of public transport 

passengers within the public transport network. Considering that AFC data do not hold background 

information about the users, we suggest a two-fold analysis for incorporating traveller information 

within the mode choice model framework. Hence, the proposed methodology consists of i) 

segmentation analysis based on clustering analysis, and ii) a latent class mode choice model 

incorporating the identified traveller segments. This allows for incorporating differences across 

travellers despite having no background information on the users of the public transport smart 

cards. The latent class mode choice model incorporates inertia and shock effects in the context of 

a mayor change in the public transport network. 

 

3.1. Segmentation analysis 

 

The objective of the first step of the analysis is to differentiate between different user types of the 

public transport system. Segmentation analysis has been used in multiple studies for this specific 

purpose (Briand et al., 2017; Eltved et al., 2021; He et al., 2020; Morency et al., 2007). To 

differentiate between various travel patterns among users we consider three temporal indicators as 

listed in Table 1. 

 

Table 1 Indicators used for the passenger segmentation analysis 

Variable Domain Description 

ShareWeekdays 0 to 1 Share of weekdays with trips 

ShareWeekend 0 to 1 Share of trips on weekend days 

SharePeakWeekdays 0 to 1 Share of trips during peak hours on weekdays 

 



 

Considering that the AFC data used cover one full week of travel in each of the three analysis 

periods (before, during and after opening of the new metro line) the temporal indicators were 

chosen to allow for distinguishing between travellers in terms of travel frequency, travel timing, 

and travel purpose. Hence, the criteria include i) the share of weekdays with active trips, ii) the 

share of trips performed on weekend days (Saturday and Sunday), and iii) the share of trips 

performed during peak hours on weekdays. The first indicator measures travel intensity and 

regularity whereas the two latter indicators provide information on trip timing and hence main 

travel purposes, since commuters often travel regularly during weekdays at specific time periods 

whereas leisure users typically travel less frequently outside of peak hours. 

 

The analysis of passenger types will be performed through clustering analysis, similarly to in 

Eltved et al. (2021). This will be based on temporal characteristics of the smart card data, such as 

the frequency of usage during a full week, the timing of the trip-making during the day and the 

distribution of trips between weekdays and weekends. This allows for estimating the user types in 

terms of use frequency and trip purpose. 

 

3.2. Latent class choice model 

 

This study will deploy discrete choice models to estimate mode choice of public transport 

passengers among three alternatives, namely i) bus, ii) metro and iii) bus/metro in combination. In 

addition to traditional level-of-service characteristics such as in-vehicle travel time, transfer times 

and walking times, the model formulation will explicitly consider shock effects after opening of 

the new metro line as well as inertia effects between the three waves of data collection (before, 

during and after). To explicitly incorporate the user segmentation into the choice modelling we 

deploy a latent class modelling approach: 

 

𝑃𝑗𝑞
𝑤 =∑𝜋𝑞𝑠

𝑤

𝑆

𝑠=1

⋅ 𝑃𝑗𝑞∣𝑠
𝑤 (𝑈𝑗𝑞

𝑤) (1) 

 

Where 𝑃𝑗𝑞
𝑤 is the choice probability of alternative j for individual q in wave w, 𝜋𝑞𝑠

𝑤  is the class 

membership function for individual q belonging to class s during wave w, 𝑃𝑗𝑞∣𝑠
𝑤 (𝑈𝑗𝑞

𝑤) is the 

probability that alternative j is chosen by individual q given class s based on the utility specification 

𝑉𝑗𝑞
𝑤. 

 

The class membership functions 𝜋𝑞𝑠
𝑤  are modelled as binary logit models depending on the clusters 

assigned to each individual based on the segmentation analysis results. The utility specification 

used in the study is adopted from Yáñez et al. (2009), in which the overall utility 𝑈𝑗𝑞
𝑤 of individual 

q for alternative j during wave w is the sum of the observed utility component 𝑉𝑗𝑞
𝑤, the random 

inertia effect 𝐼𝑗𝑟𝑞
𝑤 , the random shock effect 𝑆𝑗𝑞

𝑤, and the error term 𝜖𝑗𝑞
𝑤 . The presence of these random 

effects and the assumption that the error terms 𝜖𝑗𝑞
𝑤  follow a Gumbel distribution results in a mixed 

logit model structure for 𝑃𝑗𝑞∣𝑠
𝑤 (𝑈𝑗𝑞

𝑤). 

 

𝑈𝑗𝑞
𝑤 = 𝑉𝑗𝑞

𝑤 + 𝐼𝑗𝑟𝑞
𝑤 + 𝑆𝑗𝑞

𝑤 + 𝜖𝑗𝑞
𝑤  (2) 

 



 

The observed utility consists of traditional level-of-service characteristics, 𝑋𝑗𝑞
𝑤, which includes in-

vehicle times, waiting times at transfers, walking times at transfers, and a transfer penalty.  

 

𝑉𝑗𝑞
𝑤 = 𝛽𝑗𝑞

𝑤 ⋅ 𝑋𝑗𝑞
𝑤 (3) 

 

The habit effect, as measured through inertia, compares the observed utility across alternatives 

within the same wave. Hence, for each alternative j the observed utility is compared to the utility 

of the alternative chosen in the previous wave r.  

 

𝐼𝑗𝑟𝑞
𝑤 = Θ𝑗

𝑤 ⋅ (𝑉𝑟𝑞
𝑤−1 − 𝑉𝑗𝑞

𝑤−1) (4) 

 

The shock effect compares the observed utility for the same alternative across waves. Hence, for 

each alternative j the observed utility in wave w is compared to the utility for the same alternative 

in the previous wave w-1.  

 

𝑆𝑗𝑞
𝑤 = 𝛼𝑗

𝑤 ⋅ (𝑉𝑗𝑞
𝑤 − 𝑉𝑗𝑞

𝑤−1) (5) 

 

Finally, the error component 𝜖𝑗𝑞
𝑤  consists of 𝜈𝑗𝑞 representing an individual-specific, time-invariant 

effect for individual q for alternative j, that is, serial correlation such as personal dispreference for 

buses, 𝜁𝑗
𝑤 representing a time-specific, individual-invariant effect, and 𝜉𝑗𝑞

𝑤  is a purely random term, 

which we in this study assume to be independently and identically (i.i.d.) Gumbel distributed, 

similarly as proposed in Cantillo et al. (2007). 

 

𝜖𝑗𝑞
𝑤 = 𝜈𝑗𝑞 + 𝜁𝑗

𝑤 + 𝜉𝑗𝑞
𝑤 𝑆𝑗𝑞

𝑤 = 𝛼𝑗
𝑤 ⋅ (𝑉𝑗𝑞

𝑤 − 𝑉𝑗𝑞
𝑤−1) (6) 

 

All model parameters are assumed to be constant across the population, and the proposed model is 

estimated in PandasBiogeme (Bierlaire, 2020). 

 

 

4. CASE STUDY AND DATA 

 

The study is based on AFC data from Santiago, Chile before, during and after the inauguration of 

a new metro line in November 2017. The aforementioned new line corresponds to Line 6, which 

connects the South West area of the city with the North East, where most of the business activities 

are carried out. The location of this new line as well as its corresponding stations are presented in 

Figure 1. As can be noted from the figure, multiple areas of the city had to rely on bus services to 

access either the more attractive areas or the metro networks. It is fair to expect then that this new 

metro line will significantly improve residents' accessibility and thus it should become a relevant 

transportation alternative. The opening of the new line constitutes a pertinent study case to explore 

the effect of a new transportation alternative on passengers' choices. 

 

Data is available for three distinct one-week periods, namely approximately three months before, 

one week after, and five months after the opening of Line 6. The exact dates and the size of each 

data wave are presented in Table 2. The three periods each include more than 3 million smart cards 

totalling more than 70 million trips. Considering that the study periods cover a total of 6 months, 



 

it is necessary to consider that not all cards are used in all three study periods. The distribution of 

the presence of each unique smartcard is presented in Figure 2. Overall, we see that the most 

frequent scenario is when smartcards are only part of one period. In Santiago de Chile, public 

transport smartcards are anonymous, and thus, people get a new card when the old one gets lost or 

defective. We can also see that 18.2% of the cards are used in all three study periods. Given the big 

sample size, this relatively low proportion of multiple appearance cards still corresponds to a total 

of more than half a million smartcards. As we are interested in habit and shock effects, we will 

focus our analysis on this particular sub-sample of travellers during weekdays and morning peak 

hours (between 06:00 and 09:30 am). 

 

 
Figure 1 The Santiago metro network: Line 6 line in purple and stations in white 

 

Table 2 Analysis periods 

Period Dates Number of cards Number of trips 

Before 31 August - 6 September 2017 3,444,323 22,708,706 

During 10 - 16 November 2017 3,586,492 24,026,260 

After 9 - 15 April 2018 3,822,977 25,426,631 

 

The public transport system in Santiago system operates by tapping only and the entrance of each 

bus or metro station. The fare collected only depends on the time of day and modes used and allows 

for up to two transfers within two hours. Because of this reason, people are not required to tap their 

cards when alighting any public transportation service. To estimate the alighting points of each 

trip, an estimation process is carried out by analysing the time and location of the following tap-

ins (Munizaga and Palma, 2012). This procedure also allows joining multiple trips into journeys 

(i.e., chains of trips enabled by transferring), which provides more detailed information about 

passengers' destinations and choices. 



 

 
Figure 2 Smartcard ID distribution over the three studied periods: before, during, and 

after the opening of Line 6 

 

As we are interested in the use of the new metro line, we made the decision to analyse the 

behavioural change from a mode choice perspective. To do so, we define three possible public 

transport alternatives: bus only, metro only, and a combined alternative. From a geographical point 

of view, each journey is associated with an origin and destination zone. This zoning comes from 

the planning authorities of the city, and thus it accurately reflects the transportation system from a 

behavioural and operational point of view. Thus, for each origin-destination pair and for each of 

the three possible modes, the levels of service are calculated by aggregating and averaging all the 

observations of the period. After following this procedure, in-vehicle travel time, waiting times, 

transfer times and the number of transfers are obtained for each alternative. This methodology is 

based on Soza-Parra et al. (2022), which was successful in estimating mode choice models in the 

same city of analysis. 

 

 

5. RESULTS AND ANALYSIS 

 

The results are divided into two section focusing on the initial segmentation analysis of the smart 

card data, and the subsequent mode choice model. 

 

The segmentation analysis was performed using the entire dataset of smart cards for all three 

analysis periods covering 72,161,597 trips for 6,600,959 cards, of which 1,266,977 cards were 

active across all three periods. The number of clusters k was chosen through a combination of 

evaluating the cluster-within sum of squares while considering the cluster characteristics. The 

resulting cluster solution consists of six clusters for which the definition of the clusters based on 

the three temporal indicators are shown in Figure 3 as a boxplot, ordered by travel intensity. Table 

3 shows the distribution of smart cards and trips according across the six identified travel type 

clusters for the three analysis periods. 

 

Cluster 1 (Regular commuters) and cluster 2 (Regular non-commuters) represent those travelling 

the most in each of the periods as they travel almost every weekday, only rarely on week-end days 

and mostly inside or outside peak hours, respectively. Users in both clusters perform on average 



 

approx. 11 trips per week, and thus these two clusters combined represent approx. 71-73% of all 

trips, but only approx. 42-44% of cards. Cluster 3 (Occasional users) travel at a medium frequency 

with half of their trips on weekends and the other half spread out on approx. half of the weekdays, 

totalling approx. 6 trips per week. Clusters 4 (Irregular commuters) and 5 (Irregular non-

commuters) travel irregularly at approx. 3 trips per week, mostly on weekdays inside or outside the 

peak hours, respectively. They represent 38-39% of cards, but only 16-17% of trips. Finally, 

Cluster 6 (Weekend users) travels the least with approx. 2.5 trips per week on average, with almost 

all trips on weekends. 

 

 
Figure 3 Cluster definitions, ordered by travel intensity 

 

Table 3 Distribution of smart cards across cluster categories for the three analysis 

periods, based on all active cards 

Cluster 

Before During After 

Card 

share 

Trip 

share 

Card 

share 

Trip 

share 

Card 

share 

Trip 

share 

Regular commuters 17.6% 29.2% 17.4% 28.3% 17.8% 29.2% 

Regular non-commuters 24.9% 41.4% 26.7% 44.0% 26.5% 43.9% 

Occasional users 10.3% 9.3% 9.9% 8.7% 9.0% 7.9% 

Irregular commuters 11.5% 5.1% 11.9% 5.2% 11.5% 5.0% 

Irregular non-commuters 27.1% 11.7% 26.7% 11.2% 26.9% 11.2% 

Weekend users 8.6% 3.2% 7.4% 2.6% 8.3% 2.9% 

 

The impacts of the metro on passenger behaviour across the various types of users are shown in 

Figure 4, which shows the distribution of travel cards belonging to each cluster, and how this 

evolves across the three analysis periods. Two important findings should be highlighted. First, 

many users change travel behaviour over time. Among the most frequent travellers most stay within 

the same cluster across analysis periods probably due to relying on using public transport for work 

or other regular activities. However, a notable share moves to other clusters with most being 

internally, e.g. between clusters 1 (Regular commuters) and 2 (Regular non-commuters). Among 

the clusters with lower travel frequency (Clusters 4-6) most cards change between clusters over 

time, which is not surprising since these users have a more changing travel behaviour, hence 

resulting in belonging to different low-frequency clusters over time. Similarly, this also applies to 

the users belonging to Cluster 6 (Weekend users) where only few stays within the cluster across 

analysis periods. This might be counter-intuitive, since these cluster could represent a specific user 



 

group that only use public transport regularly on weekends. However, the large cluster movements 

suggests that this group instead represent one type of irregular users. Finally, the movements over 

time of users belonging to Cluster 3 (occasional users) are less pronounced than the irregular 

travellers, but more than the regular travellers. Hence, this suggest that clusters can be categorised 

into three distinct traveller types, namely the regular users (Clusters 1 and 2), occasional users 

(Cluster 3), and irregular users (Clusters 4, 5 and 6). 

 

 
Figure 6 Sankey diagram showing the distribution and movements of cards among the 

six clusters. Based on all cards that are active in all three analysis periods 

 

5.2. Mode choice model results 

 

The mode choice model was estimated using a (random) sample of 100,000 individuals that 

travelled in all three analysis periods, i.e. before, during and after the opening of line 6. This was 

chosen due to the very long calculation times if using the full sample of 1,266,977 cards that were 

active in all three analysis periods. To ensure that the sampling did not induce bias to the results, 

the model was run using two independent samples. Since the model estimations did not vary 

notably, i.e. less than 0.5%, this method was assumed to not induce bias to the results. 

 

Two latent classes were found among the travellers, namely i) a fully compensatory class that 

chooses based on all level-of-service characteristics (in-vehicle time, transfer time, waiting time, 

and number of transfers), and ii) a lexicographic class that minimises the number of transfers and 

if two or more alternatives have the same minimal amount of transfers then chooses based on in-

vehicle time only. Heteroskedasticity was found between the second wave (during) and the first 

(before) and third (after). This heteroskedasticity was incorporated into the model through a scale 

factor in the utilities for the second wave. 

 

Table 4 presents the model estimation results. Each parameter is accompanied by its t-Value to 

assess its statistical significance. The shock and inertia effects are random and follow a Normal 

distribution. All the parameters from the class membership model and the attributes in the mode 

choice utility function are statistically significant at a 95% confidence level. The parameters related 

to shock an inertia effect also tend to be statistically significant, but a few of them have a 90% 

confidence level. All parameters have the expect sign. The scale factor for wave 2 (during) implies 

that during that wave there is a variance 1/0.7942 = 1.59 times higher, a sign that travellers might 

be trying metro as an alternative before reaching a steady state once again in wave 3 (after). 



 

Table 4 Model estimation results 

Parameter Estimate t-Value 

Membership Model for Latent Class 1: Fully Compensatory 

Regular commuters 
1.94 19.4 

Regular non-commuters 

Occasional users 0.713 13.9 

Irregular commuters 

1.38 20.2 Irregular non-commuters 

Weekend users 

Mode Choice Model 

Latent Class 1: Fully Compensatory 

Metro Constant – Wave 1 Before 0.961 11.37 

Metro Constant – Wave 2 During 1.12 13.20 

Metro Constant – Wave 3 After 1.00 15.88 

Combined Constant – Wave 1 Before 0.493 9.56 

Combined Constant – Wave 2 During 0.318 8.32 

Combined Constant – Wave 3 After 0.469 7.31 

In-vehicle time -0.0601 -2.61 

Transfer time -0.332 -4.89 

Wait time -0.118 -11.23 

Transfers -0.707 -3.01 

Latent Class 2: Lexicographic on Transfers 

Metro Constant – Wave 1 Before 4.21 3.51 

Metro Constant – Wave 2 During 5.20 3.81 

Metro Constant – Wave 3 After 4.88 3.03 

Combined Constant – Wave 1 Before -3.01 -2.56 

Combined Constant – Wave 2 During -2.11 -3.45 

Combined Constant – Wave 3 After -2.95 -2.99 

In-vehicle time -0.345 -17.4 

Both Latent Classes 

Shock Effect - Before/During 0.152 2.33 

Std. Dev. Shock Effect - Before/During 0.092 2.01 

Shock Effect - During/After 0.113 1.78 

Std. Dev. Shock Effect - During/After 0.076 2.00 

Inertia Effect Bus -0.598 -1.88 

Std. Dev. Inertia Effect Bus 0.474 1.61 

Inertia Effect Metro 1.35 3.44 

Std. Dev. Inertia Effect Metro 0.84 3.98 

Scale Factor Before and After 1 Fixed 

Scale Factor During 0.794 11.25 

 

Based on the class membership model parameters, the two latent classes and their predominance 

withing the sample are shown in Table 5. Most travellers consider all level-of-service 

characteristics, and hence 85.0% belong to latent class 1. However, the probability of belonging to 

latent class 2 and strictly minimising the number of transfers before considering only the in-vehicle 



 

time decreases with travel frequency. More specifically, 20-33% of the occasional users belong to 

latent class 2 whereas only 13% of frequent users belong to this class. 

 

Table 5 Distribution of user segments in the two identified latent classes 

Cluster name 
Probability of Latent Class 1 

Fully compensatory 

Probability of Latent Class 2 

Lexicographic on transfers 

Regular commuters 
87.4% 12.6% 

Regular non-commuters 

Occasional users 67.1% 32.9% 

Irregular commuters 

79.9% 20.1% Irregular non-commuters 

Weekend users 

 

On both latent classes the metro constant is positive, which can be interpreted as a general 

preference of metro over bus. The metro constant is higher in wave 2 (during the opening of the 

new metro line), which suggest that travellers have a higher tendency to choose and try metro, 

which is to be expected. The combined metro/bus constants are positive for latent class 1, which 

suggest that those travellers prefer having at least one trip leg on metro than travelling exclusively 

on buses. For latent class 2 the combined metro/bus constants are negative, which is to be expected, 

as that is the only alternative that necessarily requires transferring. 

 

To better analyse the parameters related to the level of service, Table 6 presents the marginal rates 

of substitution off the attributes in terms of in-vehicle travel time. All travellers are willing to have 

larger travel times as long as they are able to travel in metro and not in bus. The same happens in 

latent class 1 for the combined metro/bus alternative, but in latent class 2 they are willing to have 

a larger travel time as long as they do not travel in the combined alternative. Latent class 1 values 

each transfer at a rate of 11.8 minutes of travel time (i.e. they are willing to travel nearly 12 minutes 

longer to avoid a transfer), while latent class 2 by definition are not willing to compromise having 

to transfer more than the minimum. 

 

Table 6 Distribution of user segments in the two identified latent classes 

Attribute 
Latent Class 1 

Fully compensatory 

Latent Class 2 

Lexicographic on transfers 

Metro Constant – Wave 1 Before 16.0 min 12.2 min 

Metro Constant – Wave 2 During 18.6 min 15.1 min 

Metro Constant – Wave 3 After 16.6 min 14.1 min 

Combined Constant – Wave 1 Before 8.2 min -8.7 min 

Combined Constant – Wave 2 During 5.3 min -6.1 min 

Combined Constant – Wave 3 After 7.8 min -8.6 min 

In-vehicle time 1.0 (reference) 1.0 (reference) 

Transfer time 5.5 n.a. 

Wait time 2.0 n.a. 

Transfers 11.8 min n.a. 

 

All mean shock effects parameters are positive, which denotes a tendency from the travellers to 

switch to alternatives that improve their general utility across waves (see the definition of the shock 



 

effect in equation 5). As the shock effect is Normally distributed, given the means and standard 

deviations 95.1% of travellers have a positive shock effect between waves 1 and 2, and 93.1% 

between waves 2 and 3. The inertia mean effect of metro is positive, which denotes a tendency of 

metro users to keep choosing metro across waves. 94.4% of the Normal distribution has a positive 

sign. The inertia effect of bus is negative, which denotes the opposite: bus users have a tendency 

to switch to metro across waves. 89.6% of the Normal distribution has a negative sign. These results 

for the inertia effects are as expected, considering that the change in the system is the opening of a 

new metro line, which should shift travellers from the bus to the metro. 

 

To evaluate the goodness-of-fit of the estimated heteroskedastic mixed latent class model, we 

compared the fit with the range of simpler models based on a single class (a traditional logit model) 

and without inertia and shock effects. The goodness-of-fit of the range of models are shown in 

Table 7. Two important findings should be highlighted. First, the latent class choice model results 

in a better fit than if treating all observations as one homogeneous group of users. This suggests 

that the smart cards indeed represent different users with different travel preferences. Second, the 

model specifications that explicitly incorporate inertia and shock effects result in better model fit. 

Thus, these results confirm previous studies in the importance of including inertia effects within 

transport mode choice. In addition, it is important to include the shock effects when analysing 

changes to mode choice over time in the context of notable changes to the infrastructure. 

 

Table 7 Goodness-of-fit indicators 

Model Log-likelihood Adjusted ρ2 AIC 

1 class base model -43,519 0.423 87,060 

1 class + inertia + shock -43,244 0.426 86,526 

2 latent classes -36,748 0.516 73,004 

2 latent classes + inertia -36,433 0.516 72,922 

2 latent classes + shock -36,427 0.517 72,910 

2 latent classes + inertia + shock -36,314 0.518 72,692 

 

 

6. CONCLUSIONS 

 

This study has focused on analysing the change in behaviour of public transport passengers over 

time after the inauguration of a new metro line in Santiago, Chile. The study was based on large-

scale RP data from three different periods: before, during and after the opening of the new line. 

Data shows that, as expected, there is a modal shift towards metro. To properly understand this 

shift, two modelling tasks were conducted: i) a segmentation analysis based on clustering analysis 

to identify profiles of travellers that behave different and ii) a latent class mode choice model that 

incorporates the segmentation as well as inertia and shock effects. 

 

Six segments were found among the travellers, based on their travel patterns along a full week, 

considering the days and times they travel. These segments are fundamental in explaining the 

probability of belonging to two different latent classes in the mode choice model. While regular 

travellers (both commuters and non-commuters) have a higher probability of having a 

compensatory behaviour and considering all level of service attributes, occasional users have a 

higher probability of behaving lexicographically and minimising transfers. 

 



 

Both latent classes differ in their preferences and behaviour. While both latent classes tend to prefer 

metro over bus, only the fully compensatory travellers tend to prefer the combined metro/bus 

alternative over bus. On wave 2 (during the opening of the new metro line) there is a higher 

tendency to choose metro, as would be expected. There is also a higher variance in the decisions, 

due to travellers trying new ways of travelling before reaching a steady state on wave 3 (five months 

after the opening of the new metro line). 

 

A significant positive inertia effect was found for metro, as metro users are more likely to keep 

using metro when its line opens. The inertia effect for bus was negative, which means bus travellers 

have a tendency to change modes and start using metro. Significant and positive shock effect where 

also found across all wave changes, a sign that travellers are seeking alternatives that improve their 

utility as time passes. 

 

The results showcase the important of considering differences across public transport travellers to 

enhance modelling and forecasting. This study considers differences in terms of segmentation of 

travellers in terms of their travel patterns and latent classes in terms of their preferences when 

choosing travel modes. 
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