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ABSTRACT 

 

Although cable car services have become an integral part of the transit system in many cities in the 

world, their optimal pricing has never been studied. Here we formulate, solve and apply a model 

for the optimal design and pricing of a cable car system considering operators’ and users’ costs. 

The links between cabins’ density, speed, and capacity are unveiled to show that money prices fall 

short of average costs such that an optimal subsidy emerges. 
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1. INTRODUCTION 

 

Public transport services admit the coexistence and integration of many technologies such as buses, 

subways, tramways, and so on. Although cable car systems have operated for tourism purposes for 

decades, nowadays they have become an integral part of the transit system in many cities in the 

world, particularly in Latin America. This is the case of Medellín, Caracas, Rio de Janeiro, and La 

Paz, cities that have installed this technology as part of their public transport network in the last 

two decades, including the most extensive urban cable car network in the world (La Paz). 

 

Many studies deal with different aspects of cable car operations: demand, acceptability, travel time, 

environmental and social impacts, design, and so on (e.g. Bocarejo et al., 2014; Garsous et al., 

2019; Guzman et al., 2022; Posada and García-Suaza, 2022). Surprisingly, however, despite the 

importance of optimal pricing in cable cars (Reichenbach and Puhe 2022, Tiessler et al., 2020), 

this issue has been neglected. Some feasibility studies can be found including infrastructure, 

operation, and maintenance costs where the fares are assumed as given (e.g. Tahmasseby and 

Kattan, 2015; Tahmasseby, 2021). Yañez-Pagans et al. (2019) point out that cable car systems tend 

to be heavily subsidized and do not have the same capacity as other massive transport systems. 

Tischler and Mailer (2019) touch on the technical and economical aspects that are relevant from 

the operators’ point of view. Brida et al. (2014) emphasize that the literature regarding the 

economic performance of cableways is limited.  

 

The main objective of this paper is to address the optimal pricing of cable cars considering 

operators’ and users’ costs and the links with optimal design. It is worth recalling that the optimal 

public transport pricing literature has received renewed attention in recent years starting from the 

fact that design and pricing are intimately linked (Jara-Diaz et al, 2023). This occurs because the 

production of trips requires two types of resources, those coming from investment and operation 

of the system and those contributed by the users, namely their time walking to and from a station, 

waiting for a vehicle, and riding the vehicles. As known, users’ time as a resource has an impact 
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on first-best (marginal) pricing only if one additional user impacts the time that has to be inputted 

by other users. The best-known examples are the reduction in waiting time because of larger 

frequencies (a positive externality, the so-called Mohring effect) or the increase in travel time 

because of congestion (a negative externality), contributing to an optimal subsidy in the first case 

or to an optimal charge in the second. This happens because in general, when time externalities 

exist, the optimal money price should equal the total marginal cost including users’ and operators’ 

resources, but what is already “paid” by the user, i.e. the average user cost (travel time properly 

valued), has to be subtracted. As shown by Jara-Diaz and Gschwender (2009), optimal design 

induces the right optimal prices and non-optimal prices induce erroneous designs: design and 

pricing of transport systems are two sides of the same coin. The technical relations between the 

design variables in cable car operations have been studied indeed, but optimal pricing has not and 

is the main objective of this paper. 

 

In the following section, we develop a stylized model for the optimal design and pricing of a mono 

cable car line taking into account operators’ and users’ costs. In the third section, the model is 

solved numerically using La Paz-like parameters, showing that observed fares are slightly above 

average operators’ costs but a subsidy seems advisable. Section four concludes.  

 

 

2. A DESIGN-PRICING MODEL FOR A CABLE CAR LINE 

 

In this section, we develop a model for a single mono cable car line with two stations whose 

location (and associated length) is known. As shown in Figure 1 schematically, the line involves 

three circuits: a long one of length 𝐿 that operates between stations, and two short ones of length 

𝑙/2 each that operate within each station, with 𝐿 >> 𝑙. The vertical rise between stations is 𝐻. 

 

 
Figure 1. The cable car system 
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(𝐿 + 𝑙). Cabins circulate at a speed 𝑉 in the long circuit (between stations) 

and at a speed 𝑣 in the short ones (i.e. within a station); the former is a design variable while the 

latter is set such that users can board and alight comfortably while the cabin is in very slow motion. 

The cabin densities in the long and short circuits are 𝐷 and 𝑑 cabins/km respectively. 

 

Frequency 𝑓 in cabins/hour can be looked at as density times speed in either circuit, i.e. 

 

𝑓 = 𝑉𝐷 = 𝑣𝑑                                   (1) 
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Because 𝑣 is exogenous, cycle time does not depend on the time passengers take to board and 

alight. As 𝑑 is cabin density in those spaces where passengers enter and exit the cabins it equals 

the inverse of 𝑠, the separation between two successive cabins (𝑠 = 1/𝑑) including cabin length. 

Separation 𝑠 must fulfill  𝑠 ≥ 𝑎, the minimum safe separation that follows a linear form 𝑎 = 𝜑𝐾 +
𝜃, where 𝐾 is cabin capacity. So 1/𝑑 ≥ 𝑎 and, because of (1), 𝑉𝐷 ≤ 𝑣/𝑎 = 𝑣/(𝜑𝐾 + 𝜃).  

 

Regarding the operator's cost, there are various components, beginning with the acquisition, 

operation, and maintenance of a cabin. Empirical information indicates that this hourly cost 𝐶 

increases linearly with the cabin capacity within a minimum 𝐾𝑚𝑖𝑛 and a maximum 𝐾𝑚𝑎𝑥. Then 

𝐶 = 𝑐0′ + 𝑐1(𝐾 − 𝐾𝑚𝑖𝑛) = 𝑐0′ − 𝑐1𝐾𝑚𝑖𝑛 + 𝑐1𝐾 = 𝑐0 + 𝑐1𝐾.  

 

Secondly, according to CERTU (2012), the energy cost depends on speed 𝑉.  Then there is a cost 

𝑐3 associated with the pylons and rope - whose number depends on 𝐿/2 - and a fixed cost 𝑐4 that 

includes stations’ infrastructure, the control systems, and the personnel. For short, the operator’s 

cost is: 

 

𝐶𝑂𝑝 = 𝐵(𝑐0 + 𝑐1𝐾) + 𝑐2𝑉 + 𝑐3𝐿/2 + 𝑐4                     (2) 

 

where the fleet 𝐵 of cabins is given by 𝐵 = 𝐷𝐿 + 𝑑𝑙 = 𝐷𝐿 +
𝐷𝑉

𝑣
𝑙 = 𝐷(𝐿 +

𝑉

𝑣
𝑙). 

 
Technical considerations indicate that energy consumption due to the speed (𝑐2)  depends on the 

vertical rise between stations 𝐻 (CERTU, 2012), and on the fleet circulating in the long circuit 

(equal to 𝐷𝐿), i.e. 𝑐2(𝐷, 𝐿, 𝐻) = 𝑝𝐸(𝛼𝐻 + 𝛽𝐷𝐿) where 𝑝𝐸 represents energy price per kWh and 

the expression in parenthesis represents the kWh consumed per kilometer.  

 

Length 𝑙 should be at least equal to the minimum distance necessary to allow passengers to board 

and alight. Boarding time varies between 𝑡𝑚𝑎𝑥 (for a passenger walking the whole cabin width) 

and zero, such that the average boarding time in a fully loaded cabin would be 𝑡𝑚𝑎𝑥/2 and the total 

boarding time would be 𝐾𝑡𝑚𝑎𝑥/2. If 𝑏 is the cabin width and 𝑣𝑤 is the average boarding and 

alighting walking speed, then 𝑙 ≥ 2𝑏𝑣𝐾/𝑣𝑤. As seats distribute such that passengers face each 

other, 𝑏 is approximately 𝑔𝐾/2 where 𝑔 is the width of a seat. Then 𝑙 ≥ 𝑔𝑣𝐾2/𝑣𝑤. As 𝐶𝑂𝑝 and 

𝐶𝑈𝑠 (see below) grow with 𝑙 we finally get 𝑙 = 𝑔𝑣𝐾2/𝑣𝑤, which makes the fleet equal to 𝐵 = 𝐷𝐿 +

𝑑𝑙 = 𝐷𝐿 +
𝐷𝑉

𝑣
𝑙 = 𝐷(𝐿 +

𝑔𝑉

𝑣𝑤
𝐾2). 

 

Let us now formulate users' costs that include waiting and in-vehicle trip time. We consider that 

users travel from one station to another arriving at the origin at a constant rate. They board in the 

second half of the short circuit at the origin station and alight in the first half of the circuit at the 

destination station. Then, in-vehicle trip time has three components: time traveling 𝐿/2 at speed 𝑉, 

time boarding the cabin along 𝑙/8 at speed 𝑣, and the time alighting the cabin also along 𝑙/8 at 

speed 𝑣. The system operates with regular headways 1/𝑓. If 𝑝𝑤 and 𝑝𝑣  are the value of waiting 

and in-vehicle time respectively, the total users’ cost is: 

 

𝐶𝑈𝑠 = 𝑝𝑤
𝑌

2𝑉𝐷
+ 𝑝𝑣(

𝐿𝑌

2𝑉
+

𝑙𝑑𝑌

4𝑉𝐷
)                                        (3) 
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The problem can now be formulated by minimizing the value of the resources consumed 𝑉𝑅𝐶 

given by the sum of (2) and (3), with 𝐷, 𝑉, and 𝐾 as design variables. Given that 𝑙 = 𝑔𝑣𝐾2/𝑣𝑤, 

and considering cabins’ spacing at stations and capacity restrictions, the optimization problem is: 

 

𝑚𝑖𝑛 𝑉𝑅𝐶(𝑉, 𝐷, 𝐾) = 𝐷(𝐿 +
𝑔𝐾2𝑉

𝑣𝑤
) (𝑐0 + 𝑐1𝐾) + 𝑝𝐸(𝛼𝐻 + 𝛽𝐷𝐿)𝑉+𝑐3𝐿/2+𝑐4 + 𝑝𝑤

𝑌

2𝑉𝐷
+ 𝑝𝑣(

𝐿𝑌

2𝑉
+

𝑙𝑑𝑌

4𝑉𝐷
)    (4) 

subject to 

𝑉𝐷 −
𝑣

𝜑𝐾+𝜃
≤ 0                   (4a) 

 

𝑌 − 𝑉𝐷𝐾 ≤ 0                   (4b) 

 

0 < 𝑉 ≤ 𝑉𝑚𝑎𝑥                   (4c) 

 

 𝐾𝑚𝑖𝑛 ≤ 𝐾 ≤ 𝐾𝑚𝑎𝑥                    (4d) 

 

It is worth noting two properties of model (4). First, 𝑉𝑅𝐶 increases with 𝐾 for all values of  𝑉 and 
𝐷, i.e. 𝑑𝑉𝑅𝐶(𝑉, 𝐷, 𝐾)/𝑑𝐾 > 0, which indicates that the minimum feasible 𝐾 within 𝐾𝑚𝑖𝑛 and 

𝐾𝑚𝑎𝑥 should be chosen; as discussed below, it is not evident that making 𝐾 = 𝑌/𝑉𝐷 is optimal 

because of constraint (4a). Second, as 𝐾 is available in a few sizes only, Problem (4) can be 

represented in space (𝑉, 𝐷) parametrically in 𝐾 and 𝑌. Let us analyze this further.  

 
Constraint (4a) states that frequency (𝑓 = 𝑉𝐷 = 𝑣𝑑) in the short circuits cannot be larger than a 

value determined by cabin length (associated with 𝐾), and by a speed that permits boarding and 

alighting the cabins (slow movement). Then (4a) imposes a technical boundary on 𝑓 and does not 

depend on 𝑌, making  𝑉𝐷 ≤ 𝑣/(𝜑𝐾 + 𝜃). Constraint (4b), however, imposes that frequency 

should be enough to support a flow 𝑌 given 𝐾, making 𝑉𝐷 ≥ 𝑌/𝐾. Therefore, when Problem (4) 

is represented in space (𝑉, 𝐷) parametrically in 𝐾 and 𝑌, constraint (4b) moves away from the 

origin as 𝑌 increases while (4a) remains stable. Therefore, there might be no feasible solution space 

and the adjustment must occur by increasing 𝐾. Consequently, Problem (4) can be solved by letting 

𝐾 be continuous and, if 𝐾 ∗≡ 𝐾𝑐 is not available in the market, the optimal available 𝐾 (𝐾𝑚*) is 

the one immediately larger than 𝐾𝑐. Note that making 𝐾 continuous constraints (4a) and (4b) would 

coincide for some 𝑌 such that 𝑌 = 𝐾𝑣/(𝜑𝐾 + 𝜃); for all 𝑌 ≤ 𝐾𝑣/(𝜑𝐾 + 𝜃) there would be no 

solution. 

 

After the optimal design is found as a function of 𝑌, the optimal prices can be obtained in the usual 

way, i.e. by subtracting the average users’ cost 𝐴𝐶𝑈𝑠 from the total marginal cost 𝑀𝐶𝑇 as recalled 

in the introduction. 

 

 

3. SIMULATION AND RESULTS 

 

The model is solved numerically using La Paz-like parameters. In La Paz there are 10 mono-cable 

lines, each involving from 2 to 5 stations with slopes within the range of 0 to 45%, moving from 

500 to 4000 pax/hour one way during the peak hour. We use parameter values of one section of the 
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Purple Line1 for our simulations, the one with the largest demand, involving two stations only with 

a 20% slope. Parameter values are presented in Table 1 (see Appendix for data sources and 

assumptions for the estimations). 

 

Table 1. Parameters values 

Parameter Unit Value 

𝐿, long circuit length [km] 4.80 

𝐻, vertical rise between stations [m] 480 

𝑐0′, cabin capital and maintenance cost [US$/h-cab] 0.0113 

𝑐1, marginal cabin capital and maintenance cost per 

passenger 

[US$/h-pax] 0.2633 

𝑝𝐸, energy price [US$/kWh] 0.19 

𝛼, coefficient that captures the effect of rise 𝐻 on energy 

consumption 

 0.0331 

𝛽, coefficient that captures the effect of fleet size in the long 

circuit 𝐷𝐿 on energy consumption 

 0.251 

𝑐3, pylons and rope capital and maintenance cost [US$/h-km] 114.82 

𝑐4, stations capital and maintenance, and personnel cost [US$/h] 523.91 

𝑉𝑚𝑎𝑥, maximum cabin speed [km/h] 21.6 

𝑣, cabin speed inside stations [km/h] 1.08 

𝐾𝑚𝑖𝑛, minimum cabin capacity [pax/cab] 4 

𝐾𝑚𝑎𝑥, maximum cabin capacity [pax/cab] 14 

𝑔, width of a seat [cm] 45 

𝑎 = 𝜑𝐾 + 𝜃, minimum cabin spacing at stations [m] 0.08K+1.62 

𝑣𝑤, boarding and alighting walking speed at stations [km/h] 1.20 

𝑝𝑣, value of in-vehicle time [US$/h-pax] 1.87 

𝑝𝑤, value of waiting time [US$/h-pax] 3.74 

 

𝐾 is available in six capacities 4, 6, 8, 10, 12, and 14 passengers. As stated above, Problem (4) can 

be represented in space (𝑉, 𝐷) for given values of 𝐾 and 𝑌; let us illustrate this with two levels of 

𝑌. Figure 2 represents Problem (4) for 𝑌=500 and 𝐾 equals 4, 8, and 12. The feasible solution space 

is the intersection among three sub-spaces: below the black curve (constraint 4a), above the red 

 
1 Strictly speaking, each section of the Purple Line constitutes a fully independent line, where passengers have to transfer 

mandatorily at the in-between station. 
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curve (constraint 4b), and to the left of the blue line (constraint 4c). The unconstrained optimum 

lies outside the feasible space such that constraints 4b and 4c are active; in the cases shown the 

optimal speed is 𝑉*=21.6 km/h (the maximum), and 𝐷* decreases with 𝐾. The resulting 𝑉𝑅𝐶 are 

1006.4, 1019.9, and 1037.7 US$/h for 𝐾 equals 4, 8, and 12, respectively. Considering all six cases 

for 𝐾, the optimal design variables happen to be 𝐾*=4 pax/cabin, 𝑉*=21.6 km/h, 𝐷*=5.79 

cabins/km, and 𝐵*= 29 cabins.  

 

 
Figure 2. Model representation with 𝒀=500 pax/h 

 

When 𝑌=3000 (Figure 3), there is no feasible solution for 𝐾=4, while for the other two 𝐾 values, 

the optimum speed is 𝑉*=21.6 km/h (the maximum), and 𝐷* decreases with 𝐾. As argued above, 

the minimum feasible 𝐾 should be chosen which yields 𝐾*=6. This confirms that constraints (4a) 

and (4b) play a key role in the solution of Problem (4). 

 

 
Figure 3. Model representation with 𝒀=3000 pax/h 

 

Considering the property shown in the previous section, Problem (4) was solved for all 500 ≤ 𝑌 ≤
4500 letting 𝐾 be continuous and, if the resulting optimal 𝐾 is not available in the market, the 

feasible optimal value for 𝐾 is the one immediately larger. 

 

Figure 4 shows the resulting design variables as a function of demand 𝑌. Optimal speed is not 

shown as it always resulted to be the maximum feasible 𝑉𝑚𝑎𝑥 (more on this below). As 𝑌 grows 

from 500 pax/hour the adjustment in system capacity is made via cabins’ density keeping cabin 



7 

capacity at the feasible minimum. Beyond a certain flow level (around 2200 in this case), system 

capacity adjusts by increasing 𝐾 discreetly diminishing density locally because density is limited 

by the operation at the stations (constraint 4a). The process repeats, i.e. cabins’ density grows until 

a new change in cabin capacity occurs. Note that as cabin capacity grows, the maximum density at 

the stations drops because cabins become longer.  

 

 
Figure 4. Optimal design variables as a function of demand  

 

In Figure 5 we show the resulting (optimal) frequency, fleet size, and total stations length. As 

optimal speed 𝑉 is always equal to 𝑉𝑚𝑎𝑥, optimal frequency 𝑓* follows the variation in 𝐷* because 

𝑓 = 𝑉𝐷; the same happens with fleet size because 𝐵 = 𝐷(𝐿 +
𝑉

𝑣
𝑙).   The length of the short circuit 

depends on 𝐾 because 𝑙 = 𝑔𝑣𝐾2/𝑣𝑤 and 𝐾 increases discreetly with 𝑌. 

 

 
Figure 5. Derived design variables as a function of demand  

 

In Figure 6 the system cost function and the corresponding total marginal costs are shown. The 

cost function corresponds to 𝑉𝑅𝐶 in equation (4) evaluated at the optimal design variables, 𝑉𝑅𝐶*. 

Total cost “jumps” every time 𝐾* changes, and increases linearly in between. This translates into 

a marginal cost figure that is constant after every jump, increasing very slightly with 𝐾*.  
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Figure 6. Cost function and marginal costs  

 

In Figure 7 (left) total average costs exhibit a decreasing shape, which yields a degree of scale 

economies - calculated as 𝐴𝐶𝑇/𝑀𝐶𝑇 - that decreases with 𝑌 as shown in Figure 6 right. Scale 

economies are mainly due to 𝐴𝐶𝑂𝑝 that decrease significantly with 𝑌. 𝐴𝐶𝑈𝑠 vary slightly between 

0.226 and 0.238 US$/pax, always smaller than 𝑀𝐶𝑇 that falls within 0.269 and 0.301 US$/pax. 

This yields the optimal prices shown in Figure 8 left. 

 

 
Figure 7. Average cost functions and degree of scale economies 

 

The optimal fare for the cable car system represented in our exercise increases from 0.043 to 0.063 

US$/pax falling short of 𝐴𝐶𝑂𝑝 which induces an optimal subsidy that falls from 1.74 to 0.20 

US$/pax as 𝑌 grows from 500 to 4500 pax/hour (shown in Figure 8 right). The observed fare today 

is about 0.44 US$/pax with no user subsidy. 
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Figure 8. Optimal fare and subsidy as a function of 𝒀 

 

The results obtained in the example indicate that the optimal subsidy should cover 97.6% of the 

average operators’ costs for very low levels of demand (i.e. 500 pax/hour), falling to 75.8% when 

the system reaches 4500 pax/hour. It should be noted that the fixed costs 𝑐3𝐿/2+𝑐4 represent 89% 

to 68% of total operators’ costs as 𝑌  increases from 500 to 4500 pax/hour. 

 

Is optimal speed always equal to 𝑉𝑚𝑎𝑥? Inspection of problem (4) suggests that increasing 𝐻 might 

influence 𝑉*. To study this we simulated the system by varying the slope while keeping all other 

parameters constant. In Figure 8 left we show the optimal speed as the slope increases from 0 to 

40% keeping demand at 500 pax/h. At 32% slope, the optimal speed becomes lower than  𝑉𝑚𝑎𝑥 and 

decreases with 𝐻 (i.e. with slope) as expected. So, we run a second simulation with varying demand 

while keeping the slope at 40% (it was 20% in our original exercise). The result is shown in Figure 

8 right, where we can see that optimal speed increases from 19.3 km/h up to 𝑉𝑚𝑎𝑥 and remains 

there for 𝑌>630 pax/h. 

 

 
Figure 8. Sensitivity of optimal speed to slope and demand 
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4. SYNTHESIS AND CONCLUSIONS 

 

A first model for the optimal price of cable car systems has been developed by identifying the 

technical relations among the many design variables and their role in both operators and users’ 

costs considering speeds, vehicle densities, and lengths of the short and long circuits; frequency; 

cabin capacity; and so on. The minimization of the value of the resources consumed by operators 

and users subject to capacity and non-traditional operational constraints produced the optimal 

values of the design variables as a function of total flow and input prices. Optimal cabin capacity 

increases discreetly with demand while optimal density adjusts (increases) within the range of 

flows where cabin capacity remains constant2. The optimal money prices were obtained from the 

corresponding cost function as the marginal costs minus the average users´ costs. Simulation with 

parameters inspired in the case of La Paz, Bolivia, produces optimal prices that grossly increase 

with patronage at a decreasing rate falling below the average operators’ costs such that an optimal 

subsidy emerges. 

 

The basic elements of the cable car model presented here can be expanded in many directions. One 

is the model formulation including more than one period (say peak and off-peak); very likely the 

speed variable will acquire importance as it is easier to adjust than density during the day. Another 

aspect is the introduction of crowding by means of a value of in-vehicle time that increases with 

passenger density or with the load factor. Yet a third (technical) aspect worth considering - 

somehow related with the previous - is the ability to accommodate demand using other types of 

cable car installations that can handle and support larger cabins. In that case the number and type 

of cables become a new design variable with an impact on the optimal design and pricing of the 

system. Finally, the strategic design of a cable car network and its integration with other modes is 

an interesting challenge that might complete the optimal design-pricing analysis of this relatively 

novel element in urban public transportation. 
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APPENDIX. SOURCES OF PARAMETERS IN TABLE 1 

 

Operators’ cost parameters are estimated from reference values reported in CERTU (2012) and 

Rivera (2005), including acquisition costs and asset life. Acquisition costs were adjusted 

proportionally by components to the total investment cost of the first three cable car lines in La Paz 

and updated to 2022. For cabins, acquisition costs are in the range from US$ 20,000 to US$ 65,000 

depending on capacity; their asset life is 25 years. Acquisition costs for each pylon and km of rope 

are US$ 500,000 and US$ 200,000 respectively. We assume that each kilometer between stations 

requires 8.4 pylons and 2.1 km of rope, based on the first three cable car lines in La Paz. The asset 

life of pylons and rope is 40 and nine years respectively. The drive station has an acquisition cost 

of US$ 15,000,000 and the return station, US$ 5,000,000. Stations have an asset life of 40 years. 

Annualized acquisition costs are obtained considering a residual value of 5%, a discount rate of 

12.67% (VIPFE, 2006), and an asset life that depends on each element. 

 

For operation, we consider that each station requires five persons, including one ticket officer, one 

guard, two platform operators, and one supervisor. Maintenance is required for the cabins, pylons, 

rope, and stations, with an annual cost equivalent to 1.5% of their corresponding acquisition cost 

(RPA, 2012). To calculate the hourly costs, total annual costs are divided by 5883 hours. It 

considers the operation of 17 hours from Monday to Saturday and 15 hours on Sunday, with 

maintenance routine deducted. 

 

In the expression 𝑝𝐸(𝛼𝐻 + 𝛽𝐷𝐿) for energy consumption, 𝑝𝐸 is the energy price per kWh which 

also considers a monthly power charge and administrative costs. In the case of La Paz, 𝑝𝐸 = 0.19 

US$/kWh (AETN, 2019). 𝛼𝐻 + 𝛽𝐷𝐿 captures the effect of the vertical rise between stations 𝐻 and 

the number of cabins moved in the long circuit 𝐷𝐿 on the kWh consumed per km. Parameters 𝛼 

and 𝛽 are obtained from CERTU (2012) where relations between 𝑃 and 𝑉 for different 𝐻 and given 

𝐿 and 𝐷 are shown. Adequate manipulation of these relations yields 0.0331𝐻 + 0.251𝐷𝐿. 

 

Maximum cabin speed is 6 m/s with capacities ranging from four to 15 passengers (Alshalalfah et 

al. 2012). The maximum capacity considered is 14 passengers due to the seating arrangement. 

Cabin speed inside stations is set to 0.3 m/s (Težak et al. 2016). The standard cabin seat width for 

public transport is 450 mm (Federal Ministry for Digital and Transport, 2022). The minimum 

distance between cabins was estimated based on information from manufacturers' websites, which 

indicated that the length of a six-passenger cabin (including a safe separation) is 2.0 meters, while 

a ten-passenger cabin is 2.4 meters. The average walking speed for boarding and alighting a cabin 

is calculated as 1.20 km/h, given that it takes six seconds to board a four-passenger cabin (Težak 

and Lep, 2019). 

 

The value of in-vehicle time is based on Yanaguaya (2010) and updated to 2022. The value of 

waiting time is assumed to be twice the in-vehicle time.  

 


